Изменить размер шрифта - +
Перегонка и электролиз воды, в состав которой входит не водород, а дейтерий, происходят заметно медленнее. Если подвергать перегонке или электролизу большое количество воды, то ближе к концу процедуры оставшаяся часть воды будет представлять собой высокую концентрацию воды тяжелой. Из такой тяжелой воды можно изготавливать дейтерийсодержащие продукты. Ну и отделять дейтерий от водорода в спектрографе тоже сравнительно несложно.

В 1935 году американский физик немецкого происхождения Рудольф Шёнхеймер пометил жирные кислоты дейтерием, так же как Кнооп за поколение до того — бензольным кольцом. Позже, по мере развития технологий, Шёнхеймер использовал для пометки аминокислот тяжелый азот, N<sup>15</sup> (обычный азот — N<sup>14</sup>). В результате своих экспериментов он сумел доказать, что организм ведет чрезвычайно активную химическую деятельность. Даже в тех ситуациях, когда никаких видимых следов активности незаметно, постоянно идут перемещения, переносы, соединения и распады, постоянно перемешиваются атомы.

Но технология маркирования изотопами по-прежнему оставалась неуклюжей и неудобной. Попав в организм, вещество, содержащее изотоп, растворялось по всему организму, и найти его потом оказывалось очень непросто.

Но выход был найден. Атомы некоторых изотопов содержат неустойчивое соединение протона с нейтроном. Из таких атомов с известными скоростями и в известном количестве испускаются различные субатомные частицы. К примеру, С<sup>14</sup>, ядро которого состоит из шести протонов и восьми нейтронов, испускает энергетические частицы такими темпами, что половина С<sup>14</sup> превращается в N<sup>14</sup> (самый распространенный вариант азота) за пять тысяч лет.

Такое явление называется радиоактивностью. Если в пищевые вещества включить радиоактивный атом С<sup>14</sup>, то с точки зрения обмена веществ он будет проявлять все те же свойства, что и обычные стабильные изотопы C<sup>12</sup> или С<sup>13</sup>, но по маркеру из энергетических частиц экспериментатор всегда сможет его найти. С<sup>14</sup> можно отловить даже в том случае, если его концентрация крайне мала.

Оставалось только придумать способ производства самих радиоактивных изотопов в достаточном количестве. До Второй мировой войны приходилось полагаться только на естественно встречающиеся в природе радиоактивные изотопы — а это были по большей части изотопы атомов, не участвующих в пищевой цепочке животных. Но после окончания войны практически ни одно исследование метаболизма уже не велось без использования веществ, помеченных радиоактивными изотопами С<sup>14</sup>, Н<sup>3</sup>, Na<sup>24</sup> и так далее. Теперь работу биохимика невозможно представить без них.

Но вернемся же к Кноопу и его первым в мире опытам с молекулярными маркерами…

Предоставляя собакам с пищей маркированные жирные кислоты с четным количеством атомов углерода, ученый выделял из мочи животных бензольное кольцо в сочетании с группой, включающей в себя два атома углерода, — такое вещество называется фенилуксусной кислотой. Кислота эта, в свою очередь, крепилась к молекуле глицина. Если же на входе подавались кислоты с нечетным числом атомов углерода, то на выходе получалось бензольное кольцо, к которому крепился только один атом углерода («бензойная кислота»), и она тоже крепилась к молекуле глицина (рис. 66). Организм часто добавляет глицин к молекуле, которую надо вывести из организма, чтобы она легче выводилась через почки, так что Кнооп не стал обращать на глицин внимания, а сосредоточился на фенилуксусной и бензойной кислотах.

 

Кнооп объяснил полученные результаты тем, что длинная цепочка жирной кислоты разрезается на блоки по два атома углерода, начиная с карбоксильной группы. Оторвать углерод от бензольного кольца организм не может, поэтому если общее количество звеньев цепочки оказывается четным, то прикрепленными к бензольному кольцу остаются два звена, если нечетным — то одно.

Быстрый переход