Изменить размер шрифта - +
Таким образом, восемнадцатиуглеродная жирная кислота, например стеариновая, в конце концов превращается в девять молекул ацетилкофермента А.

После формирования ацетилкофермента А он вступает в соединение с щавелево-уксусной кислотой для образования лимонной кислоты и входит, таким образом, в цикл Кребса, описанный в предыдущей главе. Не важно, сформирован ли ацетилкофермент А из жирной кислоты или путем катаболизма глюкозы; организм не может определить происхождение вещества (рис. 68).

Ацетилкофермент А тоже можно рекомбинировать с получением в итоге жирной кислоты. Для этого надо обратить цикл окисления жирных кислот. То есть две молекулы ацетилкофермента А объединяются для получения ацетоацетилкофермента А, затем добавляются два атома водорода, удаляется вода, добавляются еще два атома водорода — и вот мы получили четырехуглеродную жирную кислоту, конденсированную с коферментом А. Эту цепочку можно продолжать сколько угодно, добавляя каждый раз по ацетилкоферменту А.

 

Получается, что ацетилкофермент А и есть тот самый общий строительный «кирпичик», наличие которого я логически обосновал в главе 19, рассуждая о том, как крахмалистая пища переводится в жир, а нормальный уровень глюкозы в крови поддерживается за счет расщепления жира.

 

Конечно, и в метаболизме жирных кислот, как и в метаболизме глюкозы, важное место занимает дыхательная цепь. При каждой итерации цикла окисления жирных кислот происходит две дегидрогенизации. Первая катализируется флавоферментом, а вторая — пиридин-ферментом. Можно считать, что в первом случае производится две молекулы АТФ, а во втором — три, так что при каждой итерации цикла производится в целом пять молекул АТФ путем окислительного фосфорилирования.

В случае, скажем, стеариновой кислоты, в состав которой входят восемнадцать атомов углерода, происходит восемь итераций цикла (понятно, почему не девять? Попробуйте разрезать полоску бумаги на 9 частей, и увидите, что потребуется совершить всего 8 разрезов), и при этом производится девять молекул ацетилкофермента А.

То есть при переводе молекулы стеариновой кислоты в девять молекул ацетилкофермента А получается 8 умножить на 5, то есть 40 молекул АТФ. Если посмотреть на схему цикла Кребса, приведенную на рис. 64, то видно, что в этом цикле из ацетилкофермента А производится 12 молекул АТФ. Соответственно, если 9 молекул ацетилкофермента А умножить на 12, получим 108 молекул АТФ.

Таким образом, в процессе перехода от стеариновой кислоты к углекислоте и воде образуется не менее 40+108, то есть 148 молекул АТФ. Но это еще не все. Типичная молекула жира, например стеарин, состоит из трехуглеродного спирта, глицерина, в соединении с тремя молекулами стеариновой кислоты. Каждая из трех молекул стеариновой кислоты послужит формированию 148 молекул АТФ, то есть всего образуется 3 x148 = 444 молекулы АТФ. Глицерин же будет превращен в пировиноградную кислоту, что само по себе даст еще 15 молекул АТФ — итого организм получит 459 молекул АТФ в результате катаболизма каждой молекулы стеарина.

Идем дальше. При переходе одного грамма жира в углекислоту и воду высвобождается 9 килокалорий тепла (см. главу 14). Один моль стеарина весит 891 грамм, соответственно, при переходе одного моля стеарина в углекислоту и воду высвобождается 891 х 9 = 8019 килокалорий. Путем образования 459 молекул АТФ запасается 459 х 8 = 3672 килокалории химической энергии. Значит, эффективность процесса — 3672: 8019 = чуть более 45 процентов. Это превосходный результат.

Но если посмотреть на рис. 64, видно, что ацетилкофермент А попадает в цикл Кребса путем соединения с щавелево-уксусной кислотой. А щавелево-уксусная кислота производится в достаточном количестве только путем углеводного метаболизма (до какой-то степени — белкового метаболизма), но никак не метаболизма жиров.

Если в пище много жиров, но мало углеводов, ацетилкофермента А производится много, но щавелево-уксусной кислоты — мало.

Быстрый переход