Изменить размер шрифта - +
Денег они не зарабатывали — полагались на благотворительность кротонцев и, возможно, на средства некоторых учеников, поскольку вся собственность была собрана воедино, и все жили общинно. Устройство самой этой организации установить затруднительно, поскольку привычками и нравами люди того времени совсем не походили на нас. Например, пифагорейская братия отличала себя от обычных людей тем, что не мочилась на публике и не занималась сексом на виду у всех.

Скрытность играла важную роль в пифагорейском сообществе — вероятно, благодаря опыту Пифагора в тайных практиках египетского жречества. А может, из нежелания навлекать неприятности, которые могли возникнуть, узнай общественность о революционных идеях пифагорейцев. Одно из открытий Пифагора обросло такой таинственностью, что, согласно легенде, разглашение его было запрещено под страхом смерти.

Вспомним задачу определения длины диагонали в квадрате со стороной в единицу. Вавилоняне рассчитали это значение с точностью до шести десятичных знаков, но пифагорейцам этого показалось мало. Они пожелали знать точное значение. Как можно делать вид, что знаешь хоть что-нибудь о пространстве внутри квадрата, если не знаешь даже такого? Трудность, однако, состояла в том, что это значение пифагорейцы получали все с большей точностью, но ни одно полученное число не было исчерпывающим ответом. Но пифагорейцев так просто не смутишь. Им хватило фантазии задаться вопросом: а существует ли вообще такое число? Они заключили, что нет, — и им хватило одаренности доказать это.

Сейчас-то мы знаем, что длина этой диагонали равна квадратному корню из двух — иррациональному числу. Это означает, что его нельзя записать в десятичном виде с конечным количеством знаков после запятой и также его нельзя записать в виде целого числа или дроби, а пифагорейцам были известны лишь такие числа. Их доказательство несуществования этого числа на самом деле равносильно тому, что это число нельзя записать в виде дроби.

Пифагор со всей очевидностью преткнулся. То, что длина диагонали квадрата не может быть выражена ни в каком виде, провидцу, проповедующему, что числа — всё, было совсем не с руки. Что же теперь: менять философию? Дескать, числа — всё, кроме некоторых геометрических величин, которые нам кажутся совсем уж загадочными?

Соверши Пифагор простую вещь: назови он диагональ как-нибудь особо, например d, или еще того лучше — √2 и сочти ее некой новой разновидностью числа, нашему гению удалось бы ускорить создание системы действительных чисел на много веков. Предприми Пифагор этот шаг, он предвосхитил бы революцию декартовых координат, поскольку за отсутствием численной записи необходимость как-то описать этот новый вид числа недвусмысленно подсказывала изобретение числовой оси. Однако вместо всего этого Пифагор отошел от своей весьма перспективной практики ассоциировать геометрические фигуры с числами и заявил, что некоторые длины не могут быть выражены через числа. Пифагорейцы назвали такие длины алогонами, «неразумными», ныне мы называем их иррациональными. У слова «алогон» — двойной смысл: оно к тому же еще и означает «непроизносимое». Пифагор предложил решить возникшую в его философии дилемму так, что полученное решение было затруднительно отстаивать, и поэтому, в соответствии с общей доктриной скрытности, он запретил своим последователям раскрывать неловкий парадокс. В наши дни людей убивают много за что — из-за любви, политики, денег, религии, но не потому, что кто-то разболтал что-то о квадратном корне из двух. Для пифагорейцев же математика была религией, и поэтому когда Гиппас нарушил обет молчания, его убили.

Сопротивление иррациональному продолжалось еще тысячи лет. В конце XIX века, когда одаренный немецкий математик Георг Кантор создал революционный труд, в котором попытался как-то укоренить эти числа, его бывший наставник, хрыч по имени Леопольд Кронекер, «возражавший» против иррациональных чисел, категорически не согласился с Кантором и потом всю жизнь ставил ему палки в колеса.

Быстрый переход