Но Архимед поступил иначе, как и должен был поступить настоящий ученый. Решение частной задачи о сплаве натолкнуло его на мысль о законе, который относится ко всем телам и который не случайно носит имя его автора. Мы учили его: на всякое тело, погруженное в жидкость, действует со стороны этой жидкости подъемная сила, направленная вверх и равная весу вытесненной телом жидкости. Когда мы опускаемся в ванну, то чувствуем на себе действие этого закона — как и почувствовал его Архимед; но мы уже знаем, в чем здесь дело, а он не знал, он должен был понять это первым из людей.
И он понял, и не узко, не только применительно к сплавам, и поэтому, кроме доклада царю, содержащему, по-видимому, расчеты, связанные с короной, появилось позже еще одно сочинение, где ничего не говорится о короне, но зато говорится о плавающих телах. Причем обоснование закона дано здесь не только эмпирически: Архимед приводит геометрическое доказательство, и мало этого — он рассматривает не горизонтальную поверхность жидкости, а сферическую, как и следует из предположения о шарообразности Земли. Этот штрих сразу показывает тот всеобщий характер, какой придавал своему закону Архимед. И когда читаешь его простое и ясное доказательство, то понимаешь, сколь прав был древнегреческий философ и писатель Плутарх, с почтением писавший о своем великом соотечественнике: «Если бы кто-либо попробовал сам разрешить эти задачи, он ни к чему не пришел бы, но если бы он познакомился с решением Архимеда, у него тотчас бы получилось такое впечатление, что это решение он смог бы найти и сам, — столь прямым и кратким путем ведет нас к цели Архимед».
Первое сочинение — я имею в виду расчет состава царской короны — до нас не дошло, и поэтому мы не знаем точно ни обстоятельств, связанных с решением задачи Гиерона, ни судьбы мастеров, изготовивших корону. Второе же сочинение-трактат «О плавающих телах» — нам известно и дает полное право утверждать: открытие закона Архимеда не случайно.
Ведь не были же случайны все его другие открытия: аксиома Архимеда, на которой построен в современной арифметике и геометрии процесс последовательного деления; архимедов винт — устройство, изобретенное для перекачки жидкостей и применяемое до сих пор во многих машинах; закон рычага, позволяющий с помощью сравнительно небольшого усилия поднимать большие грузы; прибор для измерения видимого диаметра Солнца; небесный глобус, на котором можно видеть движение планет, солнечное и лунное затмение; и еще многие-многие математические исследования и инженерные находки, которых бы вполне хватило на успешную деятельность нескольких людей.
Даже античные историки, нередко склонные к приукрашиванию подвигов своих героев — а Архимед был героической фигурой, — нигде не намекают более на случайность его творчества. Так правомерно ли тогда говорить о случайности открытия удельного веса и закона о плавающих телах? Человек, столь тонко разбирающийся в математике, механике, астрономии, уже не раз показавший, на что способен его проницательный ум, разве не решил бы он задачу царя Гиерона, даже если бы не помог ему случай с ванной? Все равно бы решил — пусть чуть позже, пусть путем каких-то иных ассоциаций, может быть, наблюдая различную осадку по-разному нагруженных галер.
Приди Архимед к такому же решению не в бане, а дома, вспомнив одно из своих прежних купаний, и никто не решился бы утверждать, что ученый случайно натолкнулся на открытие. Наоборот, сказали бы, что не случайно правильное решение нашел именно Архимед — человек, способный использовать разрозненные наблюдения для обобщений, имеющих универсальный, всеобъемлющий характер. Ведь в сближении вроде бы далеких явлений и заключается один из мощнейших методов научного мышления. С этой точки зрения, использование наблюдений над погружением в воду собственного тела — вполне правомерный прием и вовсе даже не случайный, а обязательный. |