Изменить размер шрифта - +
Подобной формулы не может быть для суммы трех квадратов, потому что существуют пары чисел, которые оба являются суммой трех квадратов, но произведение которых такой суммой не является. Однако в 1818 году Деген нашел формулу произведения для суммы восьми квадратов. Ту же формулу открыл Грейвс, используя октонионы. Бедный Грейвс — сделанное им раньше всех открытие октонионов приписано другому; его формула для восьми квадратов оказалась неоригинальной.

Имеется также тривиальная формула произведения для суммы одного квадрата — т.е. просто для квадрата. Она имеет вид x<sup>2</sup>y<sup>2</sup> = (xy)<sup>2</sup>. Эта формула является для вещественных чисел тем же, чем формула двух квадратов для комплексных: она показывает, что норма мультипликативна, т.е. норма произведения равна произведению норм. Здесь, как и выше, норма есть квадрат расстояния от числа до начала координат. Число, противоположное любому положительному числу, имеет ту же норму, что и это положительное.

А что насчет формулы для четырех квадратов? Она утверждает то же самое для кватернионов. Четырехмерный аналог теоремы Пифагора (да, есть такая штука!) говорит нам, что кватернион общего вида x + iу + jz + kw имеет норму x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> + w<sup>2</sup>, а это есть сумма четырех квадратов. Кватернионная норма также мультипликативна, и этим объясняется формула Лагранжа для четырех квадратов.

Вы, наверное, меня уже опередили. Формула Дегена для восьми квадратов имеет аналогичную интерпретацию в терминах октонионов. Октонионная норма мультипликативна.

Здесь происходит что-то весьма любопытное. У нас имеется четыре типа последовательно усложняющихся числовых систем: вещественные, комплексные, кватернионы и октонионы. Их размерности равны 1, 2, 4 и 8. Имеются формулы, утверждающие, что сумма квадратов, умноженная на сумму квадратов, есть сумма квадратов, и эти формулы применимы к 1, 2, 4 или 8 квадратам. Эти формулы тесно связаны с соответствующими числовыми системами. Но еще более интригующей является сама последовательность чисел, которые здесь появляются: 1, 2, 4, 8 — что дальше?

 

Если продолжить последовательность, то весьма разумно было бы ожидать, что мы найдем интересную 16-мерную числовую систему. Действительно, такую систему можно построить естественным путем, называемым процессом Кэли-Диксона. Если применить этот процесс к вещественным числам, то получаются комплексные. Применение к комплексным дает кватернионы. Применение к кватернионам — октонионы. И если теперь двинуться дальше и применить его к октонионам, получатся седенионы — 16-мерная числовая система, а затем алгебры размерности 32, 64 и так далее (на каждом шаге размерность удваивается).

Что же, существует формула для 16 квадратов?

Нет. Норма седенионов не мультипликативна. Формулы произведения для сумм квадратов существуют только тогда, когда квадратов в них 1, 2, 4 или 8. Закон малых чисел снова проявил себя: то, что выглядело как последовательность степеней, стопорится.

Почему? По сути, потому что процесс Кэли-Диксона постепенно разрушает законы алгебры. Всякий раз, как он применяется, получающаяся система ведет себя в чем-то не так хорошо, как предыдущая. Шаг за шагом, закон за законом — и изящные вещественные числа погружаются в анархию. Подробности этого таковы.

Наши четыре числовые системы имеют и другие общие свойства, помимо нормированности. Наиболее впечатляющее — из-за которого они и попадают в класс обобщений вещественных чисел — состоит в том, что это «алгебры с делением». Имеется много алгебраических систем, к которым применимы понятия сложения, вычитания и умножения. Но в наших четырех системах можно, кроме того, делить. Существование мультипликативной нормы делает их «нормированными алгебрами с делением».

Быстрый переход