Изменить размер шрифта - +

Как проекция заставляет параллельные прямые пересекаться на горизонте.

Геометрия проективной плоскости исключительно изящна. Через любые две точки можно провести единственную прямую, равно как в эвклидовой геометрии. Но, кроме того, любые две различные прямые пересекаются, причем ровно в одной точке. Параллельных, которые так занимали Эвклида, не существует.

Если это напоминает вам плоскость Фано, то вы совершенно правы. Плоскость Фано — это конечная проективная геометрия.

 

От перспективы Возрождения до исключительных групп Ли остается теперь только небольшой шаг. Проективная плоскость, которая неявно присутствовала в методах Альберти, явно возникла в новой геометрии. В 1636 году Жирар Дезарг — армейский офицер, позднее ставший архитектором и инженером — опубликовал «Предполагаемый набросок попытки рассматривать результаты пересечения плоскости конусом». Звучит это как название книги о конических сечениях, и книга таковой и была, но вместо использования традиционной греческой геометрии Дезарг использовал проективные методы. В точности как эвклидову геометрию можно превратить в алгебру, используя декартовы координаты (x, y) — пару вещественных чисел, — так и проективную геометрию оказалось возможным превратить в алгебру, если разрешить буквам x или y принимать бесконечное значение (ситуация хитрым способом ставится под контроль таким образом: рассматриваются отношения трех координат и считается, что 1 : 0 = бесконечность).

То, что можно делать с вещественными числами, можно делать и с комплексными, так что у нас появляется комплексная проективная плоскость. А если тут все работает, то почему бы не попробовать кватернионы или октонионы?

Здесь возникают сложности. Очевидные методы не работают из-за отсутствия коммутативности. Однако в 1949 году математический физик Паскуаль Жордан нашел осмысленный способ построить октонионную проективную плоскость вещественной размерности 16. В 1950 году Арман Борель — математик, специализировавшийся в теории групп — доказал, что вторая исключительная группа Ли F<sub>4</sub> является группой симметрии октонионной проективной плоскости — вполне в духе комплексной плоскости, но только образованной из двух 8-мерных «линеек», деления на которых — октонионы, а не вещественные числа.

Итак, нашлось октонионное объяснение двух из пяти исключительных групп Ли. А что насчет трех оставшихся — E<sub>6</sub>, E<sub>7 </sub>и E<sub>8</sub>?

 

Взгляд на исключительные группы Ли как на грубые порождения злонамеренного божества был довольно распространенным, пока в 1959 году Ханс Фрейденталь и Жак Тите независимо не изобрели «магический квадрат» и не объяснили появление групп E<sub>6</sub>, E<sub>7 </sub>и E<sub>8</sub>.

Строки и столбцы магического квадрата соответствуют четырем нормированным алгебрам с делением. Если заданы любые две нормированные алгебры с делением, можно посмотреть в соответствующую строку и соответствующий столбец и найти в магическом квадрате — который определяет результат согласно не столь уж простому математическому предписанию — некоторую группу Ли. Появление некоторых из этих групп понять несложно; например, группа Ли, соответствующая строке с вещественными числами и столбцу с вещественными числами, есть группа SO(3) вращений в трехмерном пространстве. Если и строка, и столбец соответствуют кватернионам, то мы получаем ничуть не менее близкую математикам группу SO(12) вращений в двенадцатимерном пространстве. Если теперь взять октонионную строку или октонионный столбец, то там будут стоять исключительные группы Ли F<sub>4</sub>, E<sub>6</sub>, E<sub>7 </sub>и E<sub>8</sub>. Отсутствующая здесь исключительная группа G<sub>2</sub> также тесно связана с октонионами — как мы уже видели, она представляет собой их группу симметрии.

Быстрый переход