Народная мудрость, касающаяся правил написания научно-популярной литературы, гласит: каждая формула уменьшает продажи книги вдвое. Если так, то это очень плохая новость, потому что понять основные мотивы в данной книге никак не получится, не взглянув на несколько уравнений. Следующая глава, например, посвящена открытиям, сделанным математиками эпохи Возрождения, — открытиям формул для решения любого кубического уравнения или уравнения четвертой степени. Я могу обойтись без формулы для решения уравнений четвертой степени, но вот взглянуть на формулу для кубического уравнения нам так или иначе придется. В противном случае мы вынуждены будем ограничиться словами типа «умножаем некоторые числа на некоторые другие числа и к этому прибавляем некоторые третьи числа, а потом извлекаем квадратный корень, затем прибавляем другое число и из того, что получилось, извлекаем кубический корень; далее делаем то же самое снова, но со слегка другими числами; в конце концов складываем два результата. А, забыл! — иногда еще надо будет делить».
Некоторые авторы бросили вызов этой народной мудрости и даже написали книги про уравнения. Видимо, они следуют известному совету из области шоу-бизнеса: «Если у вас деревянная нога, помашите ею». Так вот, в некотором смысле эта книга — об уравнениях; но подобно тому, как можно написать книгу о горах, не требуя при этом, чтобы читатели взбирались на гору, также можно написать книгу об уравнениях, не требуя, чтобы читатели их решали. Тем не менее читатели книги о горах вряд ли поймут ее, если никогда не видели гор, так что для нас и в самом деле будет полезным взглянуть на специально отобранные уравнения.
Основное соглашение, которое я предлагаю заключить, тенденциозно перекошено в пользу читателя: ключевым словом будет «показать». Я хочу, чтобы вы посмотрели на уравнения. Ничего делать с ними не требуется. По мере необходимости я буду разбирать уравнения на части и объяснять, какие их свойства существенны для нашего рассказа. Я никогда не буду просить вас решить уравнение или произвести с ним какие-либо вычисления. И я всерьез постараюсь избегать их появления — настолько, насколько это возможно.
На самом деле после знакомства с ними уравнения оказываются довольно дружелюбными созданиями — ясными, четкими, иногда даже прекрасными. Тайная истина об уравнениях состоит в том, что они представляют собой простой, ясный язык для описания целого ряда «рецептов» по вычислению разных вещей. Когда я буду в состоянии выразить такой рецепт словами или просто дать вам общее представление о том, что происходит, не вдаваясь в несущественные детали, я так и буду делать. В редких случаях, тем не менее, использование слов становится столь громоздким, что нам придется прибегнуть к символам и специальным обозначениям.
В этой книге имеются три важных типа обозначений, и два из них я упомяну прямо сейчас. Одно — это наш дружище x, то есть «неизвестное». Этот символ обозначает число, которое мы еще не знаем, но значение которого отчаянно пытаемся найти.
Обозначения второго типа — это числа, набранные более мелким шрифтом и слегка приподнятые над строкой — такие как <sup>2</sup>, <sup>3</sup> или же <sup>4</sup>. Они говорят, что некоторое другое число надо умножить само на себя указанное число раз. Так, 5<sup>3</sup> означает 5×5×5, что равно 125, а x<sup>2</sup> означает x×x, где x — наш символ для неизвестного числа. Читаются они как «квадрат», «куб», «четвертая степень» и так далее, а все вместе они называются степенями соответствующего числа.
Не имею ни малейшего понятия почему. Просто надо же их как-то называть.
Или вавилонский метод решения квадратных уравнений достался древним грекам по наследству, или же они его открыли заново. |