Тем не менее именно они дают человеческой мысли ее неповторимую точность и силу, являясь, как мне кажется, важным элементом ответа на вопрос «Как работает мышление?».
Первая особенность – это способность работать с индивидным объектом. Давайте вернемся к первому отличию нейронных сетей от их компьютероподобных моделей. Вместо того, чтобы символически представлять объект в виде произвольного шаблона из последовательности битов, мы представляли его в виде шаблона из узлов одного уровня, каждый из которых соответствовал одному из свойств объекта. Перед нами тут же встает проблема: мы уже не можем отличить друг от друга два отдельных объекта с идентичными свойствами. Они представлены совершенно одинаковым образом, и система не обращает внимания на то, что перед ней – не один и тот же кусок физической материи. Мы потеряли индивидуальность объекта: мы можем создать репрезентацию овоща или лошади как понятия, но не конкретного овоща и не конкретной лошади. Все, что система узнает об одной лошади, будет сливаться с тем, что она знает о другой лошади, идентичной первой. Естественного способа представить двух разных лошадей нет. Если увеличить активность узлов, представляющих свойства лошади, вдвое, это не поможет, потому что система может решить, что это двойная степень уверенности в том, что присутствуют свойства лошади или что свойства лошади присутствуют в двойной степени.
Легко спутать отношение между классом и подклассом (например, между классом «животное» и подклассом «лошадь», с которыми сеть легко справляется) с отношением между подклассом и отдельным объектом (например, подклассом «лошадь» и отдельной особью по кличке «Мистер Эд»). У этих двух примеров отношений, естественно, есть кое-что общее. В обоих случаях свойства высшего порядка передаются и объектам низшего порядка. Если животные дышат, а лошади – это животные, то лошади дышат. Если у лошадей есть копыта, а Мистер Эд – лошадь, то у Мистера Эда есть копыта. Следуя этой логике, разработчик может соблазниться тем, чтобы рассматривать индивидуализированный объект как очень-очень узкий подкласс, используя при этом некое едва заметное различие между этими двойниками – например, крапинку, которая присутствует у одного объекта и отсутствует у другого.
Как и многие постулаты коннекционизма, эта идея уходит корнями в британский ассоциационизм. Как писал Беркли, «уберите ощущение мягкости, влажности, красноты, кислоты и вы уберете вишню, потому что она не существует отдельно от ощущений. Вишня, заявляю я, не что иное, как множество ощущаемых чувствами впечатлений». Тем не менее предположение Беркли себя не оправдало. Можно иметь совершенно идентичные знания о свойствах двух объектов и при этом все равно знать, что они разные. Представьте комнату с двумя одинаковыми стульями. В комнату входит человек и меняет стулья местами. Осталась ли комната прежней или стала другой? Всем ясно, что комната изменилась. Но нам не известны признаки, которые бы отличали один стул от другого – кроме того, что можно говорить об одном из них как о стуле № 1, а о втором – как о стуле № 2. Мы снова вернулись к произвольным ярлыкам, присваиваемым слотам памяти, как в презренном цифровом компьютере! Та же идея лежит в основе шутки комика Стивена Райта: «Пока меня не было дома, кто-то вытащил все вещи из моей квартиры и заменил их точными копиями. Когда я сказал об этом соседу по комнате, он спросил: “Мы с вами знакомы?”»
Есть, правда, одна характеристика, позволяющая отличить один индивидный объект от другого: они не могут находиться в одном и том же месте одновременно. Вероятно, мозг способен запечатлеть в памяти время и место нахождения каждого объекта и постоянно обновлять эти координаты, что позволяет ему различать индивидные объекты с идентичными свойствами. Тем не менее даже это не объясняет нашу способность отделять индивидные объекты друг от друга в мысленном восприятии. |