33) с w < –1.
Действительно, если при расширении Вселенной не будет материи с возрастающей плотностью, то постоянная Хаббла будет стремиться к некоему постоянному значению. Это означает экспоненциальный рост Вселенной. Но присутствие фантомной материи все изменит. Ее плотность будет увеличиваться с течением времени. В результате мы придем к так называемому Большому разрыву: это другой вид конца света, которым закончится судьба нашей Вселенной. В этом случае скорость расширения будет неограниченно возрастать, и все тела будут разорваны на куски, затем молекулы, атомы и элементарные частицы. Мы уже говорили об этом в разделе 5.2.
Глава 6
Черные дыры и другие экзотические объекты
6.1. Черные дыры
Выполним наше обещание и расскажем о некоторых экзотических объектах, предсказанных ОТО. Они существенно менее распространены, чем темная материя или темная энергия, однако достаточно интересны, чтобы быть по крайней мере упомянутыми в этой книге.
Первый тип объектов, которые мы рассмотрим, – черные дыры, многие из которых наблюдались астрономами. Черная дыра представляет собой объект с плотностью настолько высокой, что пространственная кривизна и приливные силы в ее центре становятся бесконечными (это называется «пространственно-временная сингулярность», или просто «особенность» для краткости). Эта особенность окружена горизонтом событий – «поверхностью» черной дыры. Любой объект, включая свет, проваливается внутрь дыры через ее горизонт событий, но не может покинуть ее и должен двигаться в направлении центральной сингулярности. Именно поэтому этот объект называют черной дырой.
Причина в том, что под горизонтом событий радиальная координата становится времениподобной. Это означает, что радиальная координата тела внутри горизонта должна уменьшаться подобно тому, как временная координата любого тела вне черной дыры должна увеличиваться. Мы путешествуем вдоль времени, а падающий объект внутри черной дыры перемещается вдоль его радиальной координаты к сингулярности.
Могут ли быть схожие участки пространства, где все должно удаляться от этой центральной сингулярности? Физики рассмотрели и эту возможность и назвали такие объекты «белыми дырами». Мы обсудим их чуть позже.
Расстояние от центральной сингулярности до горизонта событий называется радиусом Шварцшильда и пропорционально массе черной дыры. Это не совсем расстояние в привычном понимании слова, ведь движение происходит по времени. Но не будем слишком придираться к словам, когда мы описываем черные дыры и их повадки. Величины радиусов Шварцшильда реально существующих черных дыр, как правило, весьма малы: если бы Солнце стало черной дырой, его радиус Шварцшильда был бы около 3 км. Массы черных дыр лежат в диапазоне от нескольких солнечных масс до нескольких миллиардов солнечных масс. Принимая во внимание, что радиус черной дыры пропорционален ее массе, легко оценить радиусы этих черных дыр.
Первое решение уравнений Эйнштейна, описывающее черную дыру, появилось в 1916 г. одновременно с ОТО. Тем не менее потребовалось около двух десятилетий, чтобы понять физический смысл этого решения, а полное понимание было достигнуто в 1958 г. В течение длительного времени, пока наблюдательные средства не позволяли обнаружить черные дыры, отношение к ним среди астрономов заполняло весь спектр – от полного неприятия до попыток объявить любой непонятный объект черной дырой. Лишь в конце ХХ в. лагерь сторонников черных дыр торжествовал победу: некоторые из наиболее ярых противников были вынуждены признать существование черных дыр. Сам термин «черная дыра» впервые появился в 1964 г.
Естественно, саму черную дыру наблюдать нельзя, так как она, как следует из названия, ничего не излучает. На самом деле черные дыры излучают за счет квантовых эффектов, но температура этого излучения, открытого Стивеном Хокингом, очень мала и реально обнаружить его невозможно. |