Изменить размер шрифта - +
Оказывается, что это будет число 69, поскольку 69<sup>2</sup> = 4761, а 69<sup>3</sup> = 328509, и в эти числах действительно по одному разу используется каждая из десяти цифр. На самом же деле 69 является единственным числом, удовлетворяющим нашему требованию. Ясно, что такой процесс занимает много времени, так как обычный компьютер может в каждый момент времени проверять только одно число. Если на проверку каждого числа компьютер затрачивает одну секунду, то, чтобы найти ответ, ему понадобится 69 секунд. Квантовому же компьютеру для нахождения ответа потребуется всего лишь 1 секунда.

Оператор начинает с того, что представляет числа особым образом с тем, чтобы воспользоваться мощью квантового компьютера. Один из способов заключается в представлении чисел посредством вращающихся частиц: многие элементарные частицы обладают собственным спином, и они могут вращаться либо с запада на восток, либо с востока на запад, подобно баскетбольному мячу, крутящемуся на кончике пальца. Когда частица вращается с запада на восток, она обозначает 1, а когда вращается с востока на запад, то 0. Поэтому последовательность вращающихся частиц представляет собой последовательность единиц и нулей, или двоичное число. К примеру, семь частиц, вращающихся соответственно на восток, восток, запад, восток, запад, запад, запад, сообща образуют двоичное число 1101000, которое соответствует десятичному числу 104. Комбинация из семи частиц, с учетом спинов, может представлять собой любое число между 0 и 127.

При использовании обычного компьютера оператор вводит одну конкретную последовательность спинов, например, на запад, запад, запад, запад, запад, запад, восток, которая соответствует числу 0000001, или просто десятичному числу 1. Далее оператор ждет, пока компьютер проверит это число, чтобы выяснить, удовлетворяет ли оно указанному выше критерию. После этого оператор вводит 0000010, что соответствует последовательности вращающихся частиц, обозначающих 2, и так далее. Как и раньше, числа должны будут вводиться каждый раз по одному, что, как мы знаем, потребует много времени. Однако если мы имеем дело с квантовым компьютером, у оператора имеется альтернативный, гораздо более быстрый способ ввода чисел. Поскольку каждая частица является элементарной, она подчиняется законам квантовой физики. Поэтому когда частица не наблюдаема, она может задать суперпозицию состояний, которая означает, что она вращается одновременно в обоих направлениях и тем самым представляет одновременно и 0, и 1. Или же мы можем представить себе частицу, которая попадает в два разных мира; в одном мире она вращается с запада на восток и представляет собой 1, в то время как в другом она вращается с востока на запад и представляет собой 0.

Суперпозиция достигается следующим образом. Представьте, что мы можем наблюдать за одной из частиц — она вращается с востока на запад. Чтобы изменить ее спин, мы выстрелим мощным импульсом энергии, достаточным, чтобы частица стала вращаться с запада на восток. Если бы мы выстрелили более слабым импульсом, то иногда нам бы посчастливилось и частица изменила бы спин, а иногда нас бы постигла неудача и частица сохранила бы свое вращение с востока на запад. Вплоть до этого момента частица была все время на виду и мы могли проследить за ее движением. Однако если мы поместим вращающуюся с востока на запад частицу в ящик, где не сможем наблюдать за ней, и выстрелим в нее слабым импульсом энергии, то мы не будем иметь понятия, изменился ли ее спин. Частица перейдет в суперпозицию спинов с вращением с запада на восток и с востока на запад, аналогично тому, как кошка попадает в суперпозицию мертвая-живая. Если взять семь вращающихся с востока на запад частиц, поместить их в ящик и выстрелить в них семью слабыми импульсами, то все семь частиц перейдут в суперпозицию.

Когда все семь частиц находятся в суперпозиции, они фактически представляют все возможные сочетания спинов с вращением с запада на восток и с востока на запад.

Быстрый переход