Более того, она основывается на квантовой теории — той самой теории, которая положена в основу квантовых компьютеров. Так что квантовая теория, с одной стороны, используется в компьютере, который сможет раскрыть все нынешние шифры, с другой же — это основа нового нераскрываемого шифра, названного квантовая криптография.
История квантовой криптографии начинается с любопытной идеи, высказанной в конце 60-х Стивеном Виснером, в то время еще аспирантом Колумбийского университета. Достойно сожаления, что идея Виснера значительно опередила свое время и никто ее не воспринял всерьез. Он до сих пор вспоминает реакцию своих наставников: «Я не получил никакой поддержки от своего научного руководителя — он вообще не проявил к ней интереса. Я показал ее еще нескольким людям — у них делались странные лица, и они возвращались к своим занятиям». Виснер предлагал поразительную концепцию квантовых денег, огромное преимущество которых заключалось в том, что подделать их было невозможно.
Квантовые деньги Виснера основывались главным образом на физике фотонов. Как показано на рисунке 73 (а), фотон во время своего движения производит колебания. Все четыре фотона летят в одном направлении, но в каждом случае угол колебаний различен. Угол колебаний называется поляризацией фотона, и лампочкой накаливания создаются фотоны всех поляризаций, что означает, что у части фотонов колебания будут происходить вверх-вниз, у части фотонов — влево-вправо, а у остальных колебания будут происходить при любых углах между этими направлениями. Для простоты предположим, что фотоны обладают только четырьмя возможными поляризациями, которые мы обозначим .
Если на пути фотонов установить фильтр, называющийся поляризационным, то выходящий пучок света будет состоять из фотонов, которые колеблются в одном определенном направлении; другими словами, все фотоны будут иметь одну и ту же поляризацию. Мы можем рассматривать поляризационный фильтр как в некотором роде сито, а фотоны — как спички, беспорядочно рассыпанные по ситу. Спички проскользнут сквозь сито только в том случае, если они располагаются под нужным углом. Любой фотон, поляризованный в том же направлении, что и поляризация поляризационного фильтра, заведомо пройдет через него без изменений, а фотоны, поляризованные в направлении, перпендикулярном фильтру, будут задержаны.
К сожалению, аналогия со спичками не срабатывает, когда мы рассматриваем диагонально поляризованные фотоны, попадающие на поляризационный фильтр с вертикальной поляризацией. Хотя диагонально расположенные спички будут задержаны вертикальным ситом, совсем не обязательно, что это же самое произойдет с диагонально поляризованными фотонами, попадающими на поляризационный фильтр с вертикальной поляризацией. На самом деле, когда диагонально поляризованные фотоны встретятся с поляризационным фильтром с вертикальной поляризацией, то половина из них будет задержана, а половина пройдет через фильтр, причем те, которые пройдут, приобретут вертикальную поляризацию. На рисунке 73 (b) показаны восемь фотонов, попадающих на поляризационный фильтр с вертикальной поляризацией, а на рисунке 73 (с) показано, что через фильтр благополучно прошли только четыре из восьми фотонов. Прошли все вертикально поляризованные фотоны и половина диагонально поляризованных фотонов, а все горизонтально поляризованные фотоны задержаны.
<sub>Рис. 73 (а) Хотя колебания фотонов происходят во всех направлениях, мы, для простоты рассмотрения, предполагаем, что имеется только четыре различных направления, как показано на данном рисунке. (b) Лампочка испустила восемь фотонов, которые колеблются в различных направлениях. Говорят, что каждый фотон имеет поляризацию. Фотоны летят к поляризационному фильтру с вертикальной поляризацией, (с) По другую сторону фильтра уцелела только половина фотонов. Вертикально поляризованные фотоны прошли, а горизонтально поляризованные фотоны нет. Прошла половина диагонально поляризованных фотонов, после чего они стали вертикально поляризованными. |