Изменить размер шрифта - +
Он установил, что при этом происходит отщепление азота и остатки молекул аминокислот распадаются, выделяя нужную энергию. Тем самым Кребс подтвердил справедливость гипотезы Рубнера, выдвинутой почти за 50 лет до него.

Изучение внутреннего химизма клеток позволило ученым расширить представления о тонкой структуре клетки. В начале 30-х годов появился первый электронный микроскоп. Его отличие от обычного, светового микроскопа заключается в том, что вместо световых лучей в нем используются электронные. Это во много раз увеличивает его разрешающую способность. Американский физик Владимир Зворыкин (род. в 1889 г.) усовершенствовал электронный микроскоп, приспособив его для нужд цитологии. Стали видны частицы, не превышающие по размеру крупных молекул. Было обнаружено, что протоплазма клетки — это комплекс мелких высокоорганизованных структур, получивших название органелл, или частиц.

С помощью разработанных в 40-х годах методик удалось расчленить клетку и выделить из ее протоплазмы различные органеллы. Самые крупные из них — митохондрии. В типичной клетке печени содержится до тысячи митохондрий — палочковидных образований длиной 0,002–0,005 мм. Детальное изучение органелл, проведенное американским биохимиком Дэвидом Эзрой Грином (род. в 1910 г.) и его сотрудниками, показало, что именно в митохондриях протекают реакции цикла Кребса. В самом деле, здесь идут все реакции с участием катализирующих ферментрв, связанные с использованием молекулярного кислорода. Таким образом, оказалось, что маленькая органелла является своеобразной энергетической станцией клетки.

 

 

Рис. 5. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе.

 

Радиоактивные изотопы

 

Изучению сложной цепи реакций обмена веществ в значительной мере помогло использование особых атомов, названных изотопами. На протяжении первой трети XX в. физики обнаружили, что большая часть элементов имеет несколько изотопов. Организм особой разницы между ними не чувствует, но лабораторные приборы чутко реагируют на нее.

Впервые широко использовал изотопы в биохимических исследованиях американский ученый Рудольф Шенгеймер (1898–1941). В 1935 г. исследователям стал доступен редко встречающийся изотоп водорода (дейтерий), который вдвое тяжелее обычного водорода. Шенгеймер синтезировал молекулы жира, в которых заменил обычный водород тяжелым водородом, или дейтерием, а затем скормил эти жиры лабораторным животным. Таким образом в ткани животных был введен тяжелый водород, на который они реагировали так же, как и на обычный. Анализы животных жиров, содержащих дейтерий, дали поразительные результаты.

В то время ученые полагали, что запасы жиров в организме в основном неподвижны и мобилизуются только при голодании. Однако, исследовав состав жировой ткани крыс, получивших дейтерий, Шенгеймер обнаружил, что на четвертые сутки в тканях содержалась почти половина скормленного с пищей дейтерия. Другими словами, поглощенный жир откладывается, а ранее отложенный используется, то есть имеет место быстрый и непрерывный круговорот веществ, входящих в состав организма. Аналогичные результаты отмечались и в опытах с мечеными аминокислотами, в которых Шенгеймер использовал изотоп азота (тяжелый азот). Он кормил крыс смесью аминокислот, из которых лишь одна была меченая, и вскоре обнаружил, что мечеными оказались все аминокислоты. На основе этих исследований Шенгеймера были выдвинуты новые представления о динамическом состоянии всех составных частей организма.

В принципе можно проследить весь порядок обмена, последовательно используя различные соединения с изотопами. Легче всего это сделать с помощью радиоактивных изотопов, атомы которых отличаются не только весом, но и способностью к распаду с выделением высокоподвижных энергетических частиц. Эти частицы легко обнаружить, поэтому для опыта можно ограничиться минимальным количеством радиоактивных изотопов.

Быстрый переход