Примером тому может служить пенициллин — первый антибиотик, который был случайно открыт в 1928 г. шотландским бактериологом Александром Флемингом (1881—1955). Флеминг оставил на несколько дней открытой культуру стафилококковых бактерий, а затем обнаружил, что она покрылась плесенью. Внимательно разглядывая плесень, Флеминг увидел, что вокруг каждого пятнышка плесени располагаются «чистые» области, где культура бактерий исчезла. Флеминг на уровне своего времени изучил этот факт и предположил, что в этих «чистых» областях присутствует соединение с сильным антибактериальным действием, однако выделить это соединение оказалось непростым делом.
В связи с острой необходимостью в лекарственных средствах, необходимых для борьбы с инфекционными заболеваниями, во время второй мировой войны интерес к такого рода соединениям значительно возрос, и этой проблемой начали заниматься более обстоятельно.
Группе ученых под руководством английского биохимика-патолога (уроженца Австралии) Хоуарда Уолтера Флори (1898—1968) и английского биохимика (уроженца Германии) Эрнста Бориса Чейна (род. в 1906 г.) удалось выделить пенициллин и определить его строение. К 1945 г. была разработана технология получения пенициллина с использованием культуры плесени, которая позволяла получать полтонны продукта в месяц.
В 1958 г. химики научились «снимать» с готового пенициллина бензильную группу и присоединять взамен нее другие органические группы. Некоторые из этих полусинтетических веществ, не имеющих аналогов среди природных соединений, обладали более высокой антибактериальной активностью, чем сам пенициллин. Между 40-ми и 50-ми годами из различных видов микроорганизмов были выделены и другие антибиотики, в частности стрептомицин.
В ходе синтеза сложных органических соединений необходимо время от времени проводить анализ с целью идентификации продуктов, образующихся на разных стадиях процесса. Количество вещества, которое можно было бы отобрать для анализа, как правило, весьма невелико, и поэтому анализ в лучшем случае давал неточные результаты, а в худшем и вовсе был невозможен.
Австрийский химик Фриц Прегль (1869—1930) удачно модифицировал оборудование, используемое при анализе, уменьшив его размеры. Он создал особо точные весы, сконструировал образцы тонкой стеклянной посуды, а к 1913 г. разработал методику микроанализа. С этого времени анализ малых проб стал точным.
Классическими методами анализа обычно называют определение объема вещества, расходуемого при реакции (объемный анализ, иначе титриметрический анализ), или массы вещества, полученного в результате реакции (весовой анализ, иначе гравиметрический анализ). В XX в. были разработаны новые, физические, методы анализа, а именно измерение поглощения света, изменения электрической проводимости и другие более тонкие и более сложные методы .
Белки
Далее Грэхем перешел к изучению диффузии растворенных веществ. Он обнаружил, что растворы веществ, подобных соли, сахару или сульфату меди, проходят через разделяющую перегородку из пергаментной бумаги (имеющей, как он предполагал, микроскопические поры). В то же время растворы таких соединений, как гуммиарабик, животный клей и желатина, пройти через разделяющую перегородку не могут — очевидно, молекулы соединений последней группы для этого слишком велики.
Соединения, способные проходить через поры пергамента (и, как выяснилось, легко кристаллизующиеся), Грэхем назвал кристаллоидами. Соединения другой группы, не способные, подобно животному клею (по-гречески κόλλα). проходить через поры пергамента, он назвал коллоидами. Наука о гигантских молекулах стала впоследствии важным разделом коллоидной химии, которой, таким образом, Грэхем положил начало .
Предположим, что с одной стороны разделяющей перегородки находится чистая вода, а с другой — коллоидный раствор. |