Молекулы воды могут свободно проникать через перегородку в оба отсека. В первый момент в отсек с коллоидным раствором будет попадать большее число молекул воды, чем покидать его, поскольку выравнивание концентраций по обе стороны перегородки — самопроизвольный энергетически выгодный процесс. Суммарный поток молекул воды в отсек с коллоидным раствором будет продолжаться до тех пор, пока возникающая разность давлений жидкости с обеих сторон перегородки не достигнет определенной величины. Величина этого давления, приводящего к вынужденному равновесию, называется осмотическим давлением раствора.
В 1877 г. немецкий ботаник Вильгельм Пфеффер (1845—1920) показал, как можно измерить осмотическое давление и как, исходя из полученных результатов, можно определить молекулярную массу больших молекул, образующих коллоидные растворы. Это был первый удачный метод оценки размера таких молекул.
В 1923 г. шведский химик Теодор Сведберг (1884—1971) сконструировал центрифугу и разработал седиментационный метод определения молекулярной массы макромолекул, главным образом белков.
Ассистент Сведберга Арне Вильгельм Каурин Тиселиус (1902—1971), также швед, в 1923 г. разработал более совершенный метод разделения гигантских молекул, основанный на характере распределения электрического заряда по поверхности молекулы. Этот способ — электрофорез — оказался особенно важным при разделении и очистке белков.
С помощью физических методов химики могли получить представление об общей структуре гигантских молекул, однако они стремились установить детальное строение этих соединений. Особый интерес вызывали у них белки.
В то время как гигантские молекулы таких веществ, как крахмал или клетчатка древесины, построены из одного многократно повторяемого блока, молекула белка строится из двадцати различных, но тесно связанных блоков — различных аминокислот (см. гл. 6). Именно по этой причине молекулы белков так разнообразны, но это же создает большие трудности при попытке их характеризовать.
Эмиль Фишер, который ранее установил детальное строение молекул сахаров (см. гл. 7), в начале нашего века обратил внимание на молекулу белка . Он показал, что аминогруппа одной аминокислоты связана с остатком молекулы другой кислоты пептидной связью. В 1907 г. Фишер получил соединение, объединяющее восемнадцать аминокислот, и показал, что оно обладает рядом свойств, характерных для белков.
Однако определить порядок аминокислот в полипептидной цепи молекулы природного белка удалось лишь полстолетия спустя, после того как был разработан еще один метод анализа.
Открыл этот метод русский ботаник Михаил Семенович Цвет (1872—1919). Исследуя пигменты растений, Цвет пропустил раствор смеси очень мало различающихся по цвету пигментов через трубку, заполненную адсорбентом — порошкообразным карбонатом кальция, и промыл затем адсорбент чистым растворителем. Отдельные компоненты смеси при этом разделились и образовали цветные полосы. Цвет опубликовал статью с описанием открытого им метода разделения, который он назвал хроматографией («цветописью») .
Статья русского ученого осталась незамеченной, но в 20-е годы Вильштеттер (см. разд. «Лекарственные средства») и его ученик, немецкий химик (австриец по происхождению) Рихард Кун (1900—1967), вновь открыли этот способ разделения. В 1944 г. английские химики Арчер Джон Портер Мартин (род. в 1910 г.) и Ричард Лоуренс Миллингтон Синг (род. в 1914 г.) предложили новый вариант этого метода: они заменили трубку с адсорбентом на фильтровальную бумагу. Анализируемая смесь распределялась по фильтровальной бумаге, и компоненты смеси при этом разделялись. Этот способ был назван бумажной хроматографией.
В конце 40-х — начале 50-х годов нашего века химикам удалось обстоятельно проанализировать с помощью метода бумажной хроматографии смеси аминокислот, полученные при расщеплении ряда белков. |