До XVIII века не знали катаного железа в виде листов, круглых болванок и полос (1783 г.). Паровой молот Несмита был изобретен лишь в 1838 г.
Древний мир не мог как следует использовать пар уже по причине слабого развития металлургии. Даже примитивную паровую машину нельзя построить без листового железа. Первые машины кажутся нам жалкими и неуклюжими, но металлургия того времени не могла создать ничего более совершенного. Только в 1856 г. появился бессемеровский процесс, а еще позднее (1864) — мартеновская печь, где сталь выплавляли в неслыханных ранее количествах. Сегодня в электрической печи можно видеть тонны раскаленного железа, напоминающего кипящее молоко. Ничто из прежних практических достижений человечества не сравнится по своим последствиям с властью над огромными массами железа и стали и способностью регулировать их качество и структуру. Железные дороги и паровые машины были лишь первыми триумфами металлургии, затем появились железные и стальные корабли, огромные мосты и новые способы строительства с широким применением стали.
До XIX века не существовало судов грузоподъемностью более 2000 тонн; в наше время никого не удивляет лайнер в 50 000 тонн. Некоторые люди с презрением относятся к прогрессу, породившему «гигантоманию», что свидетельствует только об их умственной ограниченности. Огромный стальной корабль — это вовсе не увеличенная копия малых судов прошлого, а принципиально иное явление — он легче и прочнее, построен не на глазок по эмпирическим правилам, а на основе сложнейших вычислений. В старых домах и кораблях господствовал материал, которому все беспрекословно подчинялось. Отныне он покорен и подвластен воле человека. Извлеченную из-под земли руду плавят и прокатывают, чтобы в конце концов вознести блестящим тонким куполом в шестистах футах над городом!
Все эти подробности о металлургии железа мы привели в качестве иллюстрации. То же самое относится к меди, олову и многим другим металлам, в том числе и таким неизвестным до XX века, как никель и алюминий. Блестящие победы технической революции связаны со все возрастающим использованием самых разнообразных материалов. Но все-таки мы пожинаем только первые плоды, нам еще предстоит применить на практике добытые знания, хотя многие приложения науки оказались неразумными, вульгарными и даже ужасными.
Одновременно с развитием механических возможностей возникла новая наука об электричестве, но только в 80-х годах XIX века эта отрасль начала приносить плоды, способные поразить воображение простого человека. Как-то совершенно неожиданно появились электрический свет и электрическая тяга, возможность передачи энергии с последующим преобразованием в свет, тепло или механическое движение, для чего медную проволоку используют наподобие водопроводной трубы.
Сначала передовыми нациями в этом приумножении знаний были англичане и французы, однако наученные Наполеоном смирению немцы показали такое рвение и упорство в научных исследованиях, что превзошли их.
Английская наука создавалась главным образом вне традиционных центров образования и знаний. Университеты пребывали в состоянии застоя и оставались по большей части в руках педантичных приверженцев латинских и греческих классиков. Французское образование также всецело находилось под влиянием классической традиции иезуитских школ. Немцам нетрудно оказалось создать сообщество исследователей, пусть немногочисленное, но довольно значительное по сравнению с одиночками-изобретателями и экспериментаторами в Англии и Франции. Научная работа делала эти страны богатыми и сильными, хотя самих ученых и изобретателей не обогащала. По своей природе настоящие ученые (люди не от мира сего) слишком заняты исследованиями, чтобы тратить время на извлечение из них денег, и, естественно, экономические выгоды достаются предпринимателям, которые видят в изобретателях средство для собственного обогащения.
Немцы оказались умнее. У германских ученых не было непримиримой ненависти к новой науке, а у бизнесменов и промышленников — характерного для Англии презрения к людям науки. |