Изменить размер шрифта - +
Конечно, это занятие было утомительным, но совершенно необходимым.

Под четвертым номером оказался пептид, состоящий из девяти аминокислот. Пептид расщеплялся при помощи соляной кислоты вначале на более мелкие фрагменты, а затем на отдельные аминокислоты. Те, в свою очередь, тоже разделялись и исследовались, и, наконец, Ингрэму удалось определить расположение аминокислот в четвертом пятне гемоглобина А. Он был таков: гистидин — валин — лейцин — лейцин — треонин — пролин — глутаминовая кислота — глутаминовая кислота — лизин (это названия различных аминокислот).

Расположение в гемоглобине S было следующим: гистидин — валин — лейцин — лейцин — треонин — пролин — валин — глутаминовая кислота — лизин.

Если вы сравните два списка, то увидите, что в них только одно различие. В том месте, где у гемоглобина А находится глутаминовая кислота, у гемоглобина S находится валин. Насколько нам сегодня известно, это единственное различие между двумя молекулами: несоответствие двух аминокислот из шестисот (по одной в двух одинаковых частях гемоглобина).

Один из коллег доктора Ингрэма, Джон Хаит, проделал тот же эксперимент с гемоглобином C, и в этом случае четвертое пятно оказалось другим. Его расчленили на два фрагмента. В гемоглобине C на месте глутаминовой кислоты, которая присутствовала в гемоглобине А, или валина — в гемоглобине S, оказался лизин. Поскольку фермент трипсин, используемый для расщепления молекулы на две части, атакует пептид в том месте, где находится лизин, четвертое пятно в гемоглобине С разделилось на два пептида, один из семи аминокислот и один из двух.

Теперь стало понятно, что было причиной различного поведения пептидов при электрофорезе. Глутаминовая кислота гемоглобина А несет отрицательный заряд. У валина в гемоглобине S заряда нет. Лизин в гемоглобине С имеет положительный заряд. В итоге заряды у каждого пептида различны, поэтому в электрическом поле они ведут себя по-разному.

Конечно, как и все, это громкое открытие немедленно вызвало новые вопросы. Почему такое ничтожное изменение состава молекулы гемоглобина так сильно влияет на его растворимость, устойчивость человека к малярии и тому подобное? Как гены влияют на состав молекулы? Как им удается контролировать соединение шести сотен аминокислот? И что может произойти с геном и заставить его изменить всего одну аминокислоту в молекуле белка?

 

Глава 8

Удаление шлаков

 

Как только благодаря гемоглобину и кровеносной системе кислород попадает в клетку, он соединяется с атомами молекул, полученных нами из пищи. В этом задействовано множество химических реакций, каждая из которых контролируется особым ферментом. В пище бесчисленное множество молекул, но в основном они состоят всего из четырех атомов: углерода, водорода, кислорода и азота. Эти четыре атома составляют 99 % всех атомов в пище.

Атомы водорода в органических соединениях (углеродсодержащие соединения, из которых состоят живые ткани и, следовательно, наша пища) легко соединяются в организме с кислородом, образуя воду. Молекула воды состоит из двух атомов водорода и одного атома кислорода. Атомы углерода в органических соединениях вступают в реакцию с кислородом и образуют углекислый газ. Молекула углекислого газа состоит из одного атома углерода и двух атомов кислорода.

Во время этих процессов происходит высвобождение энергии, так как смесь органических веществ и кислорода содержит больше энергии, чем образующиеся из нее углекислый газ и вода. Высвободившаяся во время перехода углерода от одного химического соединения к другому энергия выделяется в виде теплоты. Когда мы сжигаем уголь, нефть, природный газ, дерево, бумагу и тому подобное, углерод и водород, содержащиеся в этих материалах, соединяются с кислородом, и мы с благодарностью пользуемся полученным в результате этого теплом.

Быстрый переход