Изменить размер шрифта - +
Вы не найдете в своей гостиной случайных карманов, где воздуха почему-то нет. Причина в том, что молекулы воздуха летают вокруг повсюду, сталкиваются и отлетают случайным образом и очень быстро заполняют все доступное пространство. Такое поведение зафиксировано в знаменитом втором законе термодинамики, традиционная интерпретация которого гласит, что газ стремится к наибольшему беспорядку. «Беспорядок» в данном контексте относится к тому, что все должно быть как следует перемешано; это означает, что ни в одной области плотность газа не должна быть выше, чем в любой другой.

На мой взгляд, эта концепция, формально известная как энтропия, слишком скользкая, чтобы ее можно было обозначить одним простым словом, таким как «беспорядок», — хотя бы потому, что словосочетание «равномерно перемешанный», мне кажется, указывает скорее на упорядоченное состояние. Но пока я хочу лишь обозначить традиционную границу. На самом деле в математической формулировке вообще не упоминается ни порядок, ни беспорядок, но она слишком формальна и сложна, чтобы обсуждать ее здесь.

То, что верно для комнаты, верно, конечно, и для большой комнаты. Так почему бы нам не взять комнату размером с целую Вселенную? Более того, почему не рассмотреть саму Вселенную? Ведь ясно, что второй закон термодинамики требует, чтобы весь газ во Вселенной распределился равномерно по всему ее объему, образовав что-то вроде разреженного тумана.

Если бы это было так, то для человечества это было бы очень плохой новостью, поскольку мы с вами состоим не из разреженного тумана. Мы довольно плотные, с этим не поспоришь, и живем на довольно большом комке вещества, которое обращается по орбите вокруг еще более крупного комка — такого крупного, что он поддерживает энергетические ядерные реакции, порождая тепло и свет. Неудивительно, что те, у кого не лежит сердце к обычным научным описаниям происхождения человечества, часто привлекают второй закон термодинамики, чтобы «доказать», что мы не могли бы существовать, если бы некое гиперразумное существо намеренно не сотворило нас и не организовало Вселенную в соответствии с нашими запросами.

Однако термодинамическая модель газа в комнате не годится для построения модели поведения Солнечной туманности — или Вселенной в целом. В ней рассматриваются не те типы взаимодействия. Термодинамика предполагает, что молекулы замечают друг друга только при столкновениях; в этом случае они отскакивают друг от друга. Столкновения носят абсолютно упругий характер (это значит, что энергия при столкновении не теряется), так что молекулы продолжают летать и сталкиваться вечно. Формально можно сказать, что силы, управляющие взаимодействием молекул в термодинамической модели газа, — это силы отталкивания с малым радиусом действия.

Представьте себе вечеринку, где всем гостям завязывают глаза и затыкают уши, так что узнать о присутствии в зале кого-то еще можно только одним способом: наткнувшись на него. Вообразите себе также, что все присутствующие чрезвычайно необщительны, поэтому любые двое, случайно столкнувшись, спешат сразу же оттолкнуться и разойтись. Скорее всего, после некоторого начального периода многочисленных столкновений и шатания по залу гости распределятся по нему довольно равномерно. Распределение не будет абсолютно равномерным все время, поскольку иногда гости будут случайно сближаться и даже сталкиваться, но в среднем они будут распределены по залу. Так ведет себя термодинамический газ, в котором в роли гостей выступает гигантское число молекул.

Газовое облако в космосе — явление более сложное. При столкновении молекулы по-прежнему разлетаются, но в облаке присутствует и другая сила — гравитация. Термодинамика не учитывает гравитацию, потому что в этом контексте ее действие пренебрежимо мало. Но в космологии гравитация — доминантный игрок, потому что газа в пространстве очень-очень много. Термодинамика помогает ему сохранять газообразность, но именно гравитация определяет, что делает газ в крупных масштабах.

Быстрый переход