Изменить размер шрифта - +
Быстрые компьютеры с большими объемами памяти аппроксимируют задачу при помощи численных методов, а затем проводят множество вычислений методом «грубой силы», чтобы получить приближенный ответ. В большинстве моделей сталкивающиеся тела рассматриваются как капли липкой жидкости, способные как разбиваться на более мелкие капли, так и сливаться в более крупные. Первоначальные капли имеют размеры планет; капли, на которые они дробятся, меньше, но только по сравнению с планетами. На самом деле они по-прежнему довольно велики.

Стандартная модель динамики жидкости восходит к XVIII веку, к Леонарду Эйлеру и Даниилу Бернулли. Она формулирует физические законы течения жидкости в виде уравнения в частных производных, описывающего, как скорость жидкости в каждой точке пространства изменяется со временем в ответ на действующие силы. Такие уравнения не решаются в формульном виде, за исключением простейших случаев, но разработаны очень точные вычислительные методы их решения. Серьезный вопрос здесь — природа модели, которая в принципе требует исследовать скорость жидкости в каждой точке некоторой области пространства. Однако даже компьютеры не в состоянии произвести бесконечное число расчетов, поэтому мы «дискретизируем» уравнение: аппроксимируем его связанным уравнением, в котором задействовано лишь конечное число точек. В простейшем методе в качестве репрезентативной выборки для всего объема жидкости используются узлы некоторой решетки, в которых и отслеживается динамика изменения скорости. При достаточно частой решетке аппроксимация получается неплохая.

К несчастью, такой подход не слишком годится для сталкивающихся капель, потому что при разбивании капли поле скорости получает разрывы. На помощь приходит хитроумный вариант метода решетки. Он работает даже тогда, когда капли разбиваются на более мелкие или, наоборот, объединяются в более крупные. Этот метод, известный как гидродинамика сглаженных частиц, разбивает жидкость на соседние «частицы» — крохотные области. Но вместо того, чтобы использовать фиксированную решетку, мы следуем за частицами и следим, как они отзываются на действующие силы. Если соседние частицы движутся примерно с одинаковой скоростью и в одном направлении, они находятся в одной капле и останутся в ней. Но если соседние частицы направляются в совершенно разных направлениях или имеют существенно разные скорости, то капля разбивается на более мелкие.

 

 

Математика добивается такого эффекта, «сглаживая» каждую частицу и превращая ее в своего рода мягкий пушистый шарик (называется это сферической перекрывающейся кернфункцией), а затем накладывая эти шарики друг на друга. Каждый шарик может быть представлен своей центральной точкой, и нам необходимо рассчитать, как эти точки движутся с ходом времени. Математики называют уравнение такого рода задачей n тел, где n — число точек, или, что то же самое, число пушистых шариков.

 

* * *

Все это очень хорошо, но задача n тел трудна. Кеплер исследовал задачу двух тел — орбиту Марса — и сделал вывод о том, что она представляет собой эллипс. Ньютон доказал математически, что когда два тела движутся под воздействием гравитации, убывающей по обратно-квадратичному закону, то оба они движутся по эллипсам вокруг общего центра масс. Но попытавшись разобраться в задаче трех тел — в базовом случае это Солнце, Земля и Луна, — математики XVIII–XIX веков обнаружили, что это далеко не такая аккуратная и упорядоченная задача. Даже громадная формула Делоне представляет собой всего лишь аппроксимацию. На самом деле орбиты тел в этой задаче, как правило, хаотичны — очень и очень нерегулярны — и никакими красивыми формулами или классическими геометрическими кривыми не описываются. Подробнее о хаосе можно прочитать в главе 9.

Чтобы реалистично смоделировать планетарное столкновение, число пушистых шариков должно быть велико — скажем, тысяча, а еще лучше миллион.

Быстрый переход