Изменить размер шрифта - +
Я до сих пор не согласен с его отношением к квантовой электродинамике, хотя не думаю, что он был просто упрямцем, требование, чтобы теория была полностью конечной, аналогично множеству других эстетических требований, которые всегда выдвигаются физиками-теоретиками.

 

* * *

Мой третий рассказ посвящен развитию и окончательному признанию современной теории слабых ядерных сил. В повседневной жизни эти силы не так важны, как электрические, магнитные или гравитационные, но они играют существенную роль в цепочке ядерных реакций, за счет которых в сердцевинах звезд выделяется энергия и происходит образование различных химических элементов.

Впервые слабые ядерные силы обнаружились в явлении радиоактивности, открытом в 1896 г. Анри Беккерелем. В 1930-е гг. стало понятно, что в том конкретном типе радиоактивности, который обнаружил Беккерель, а именно в бета-распаде ядер, слабая ядерная сила заставляет нейтрон внутри ядра превращаться в протон, одновременно образуя электрон и еще одну частицу, известную сейчас как антинейтрино, которые вылетают из ядра. Подобный процесс не может происходить за счет сил других типов. Сильная ядерная сила, удерживающая протоны и нейтроны вместе внутри ядра, и электромагнитная сила, отталкивающая протоны внутри ядра друг от друга, не способны изменить тип этих частиц. Тем более это не может сделать гравитационная сила. Таким образом, наблюдение превращения нейтронов в протоны или протонов в нейтроны свидетельствует о новом типе сил в природе. Как следует из названия, слабые ядерные силы много слабее электромагнитных сил или сильных ядерных сил. Это вытекает, в частности, из того, что ядерный бета-распад происходит очень медленно – самые быстрые из этих распадов происходят в среднем за одну сотую долю секунды, что невероятно медленно по сравнению с типичной длительностью процессов, вызванных сильными ядерными силами, составляющей величину порядка 10<sup>−23</sup>с.

В 1933 г. Энрико Ферми сделал первый важный шаг по пути построения теории этой новой силы. В предложенной Ферми теории слабая ядерная сила не действует на расстоянии, как гравитационная или электромагнитная силы, а превращает нейтрон в протон, одновременно создавая в той же точке пространства электрон и антинейтрино. Последовало четверть века усилий экспериментаторов, потраченных на то, чтобы связать концы с концами в теории Ферми. Главным невыясненным вопросом был вопрос о том, как слабая сила зависит от относительной ориентации спинов частиц, участвующих в процессе. В 1957 г. это было наконец установлено, и теория Ферми приняла окончательный вид.

После решительного прорыва, совершенного в 1957 г., казалось, уже не осталось никаких проблем в нашем понимании слабой ядерной силы. И все же, хотя мы имели теорию, способную дать численный ответ для любого наблюдаемого на опыте явления, связанного со слабой силой, сама теория казалась физикам в высшей степени неудовлетворительной. Многие из нас в тяжких трудах пытались улучшить теорию и придать ей смысл.

Недостатки теории Ферми были связаны не с экспериментом, а с самой теорией. Прежде всего, хотя теория хорошо описывала ядерный бета-распад, она приводила к бессмысленным результатам для более экзотических процессов. Теоретики пытались задавать совершенно осмысленные вопросы, например, какова вероятность рассеяния нейтрино при столкновении с электроном. Когда же они пытались вычислить эту вероятность (принимая во внимание испускание и последующее поглощение нейтрона и антипротона), ответ оказывался бесконечным. Как вы понимаете, сами подобные эксперименты еще не были проделаны, но вычисления давали такие результаты, которые никогда не могли бы быть согласованы с каким бы то ни было опытом. Как мы уже видели, в 1930-е гг. подобные бесконечности были обнаружены Оппенгеймером и другими в теории электромагнитных сил, но в конце 1940-х гг. теоретики обнаружили, что все эти бесконечности в квантовой электродинамике сокращаются при правильном определении или «перенормировке» массы и заряда электрона.

Быстрый переход