Речь сейчас шла главным образом о непрерывном радиоизлучении, которое принимается радиоастрономами в форме увеличения уровня шума. Но в космосе есть не только шум. Некоторые космические объекты излучают отдельные радиоволны. Мы видим, что ситуация становится похожей на оптическую спектроскопию, о которой недавно говорилось. И действительно, в последнее время достижения радиоспектроскопии очень значительны. Например, с помощью этого метода удалось открыть в межзвездных облаках большое количество органических молекул. К сегодняшнему дню число наименований органических соединений в космосе превысило пятьдесят.
Но началась радиоспектроскопия с открытия радиолинии межзвездного водорода с длиной волны 21 сантиметр. Эта знаменитая длина волны в течение многих лет рассматривалась как возможный канал связи между внеземными цивилизациями. Существование этой линии предсказал еще в 1944 году молодой голландский студент Ван де Хюлст, но оценки всех реальных возможностей наблюдений этой линии были проделаны крупным советским астрофизиком И. Шкловским.
Значение этой радиолинии, разумеется, не ограничивается вопросом контакта с другими мирами. Исследование глубин Вселенной на волне 21 сантиметр дает возможность «буквально пересчитать все водородные атомы межзвездной среды» (И. Шкловский), измерить такой принципиальный параметр межзвездных облаков, как их температуру, изучить динамические процессы в облаках, и, наконец, на этой волне можно зондировать, «видеть» нашу Галактику гораздо лучше, чем в видимом диапазоне, так как излучение с этой длиной волны не поглощается, в отличие от электромагнитных колебаний видимого диапазона, межзвездной средой. Поэтому на волне 21 сантиметр можно исследовать районы Галактики, находящиеся от нас на противоположной от центра Галактики стороне, на расстоянии многих тысяч парсек.
В Советском Союзе значительный вклад в радиоастрономические исследования был сделан В. Троицким, И. Шкловским, Н. Кардашевым, В. Гинзбургом и др. Так, например, академик В. Гинзбург и его ученики создали теорию «синхротронного» излучения. Теория эта — крупнейшее достижение советской науки.
Физические процессы, ответственные за радиосигналы от различных космических объектов, можно грубо разбить на две группы — тепловое и нетепловое радиоизлучение. Начнем с теплового. В любом нагретом теле мы имеем дело с тепловым движением атомов молекул и электронов. Разумеется, движение свободных электронов происходит в металлах или в плазме. Но нам сейчас особенно важен сам факт движения.
При столкновении часть кинетической энергии атомов или электронов переходит в электромагнитные волны и излучается в пространство. Именно такое излучение и называется тепловым. Совершенно ясно, что оно практически ничем (за исключением длины волны) не отличается от обычного излучения нагретого тела в видимой области спектра. Таким образом, любое нагретое тело излучает в радиодиапазоне, хотя и с существенно меньшими интенсивностями, чем в видимом и инфракрасном.
Но существуют и нетепловые формы радиоизлучения, и синхротронное излучение является как раз одной из форм нетеплового излучения. Синхротронным излучение названо потому, что оно впервые наблюдалось в мощных ускорителях — синхротронах. Это излучение возникает при взаимодействии релятивистских электронов с магнитными полями. (Релятивистской называется частица, скорость которой сравнима со скоростью света. Электроны с энергией больше 1 МЭВ считаются релятивистскими.)
Если в пространстве есть магнитное поле, то релятивистский электрон, так же, как и «нормальный», в соответствии с известными законами физики будет закручиваться по спирали вокруг магнитной силовой линии. Однако если электрон, движущийся в магнитном поле с небольшой скоростью, будет излучать при торможении в магнитном поле более или менее одинаково во всех направлениях, то в релятивистском случае излучение будет направлено в сторону движения электрона. |