Свет, излученный некоторыми квазарами, путешествовал во Вселенной более 10 миллиардов лет, прежде чем попал в объектив телескопа. И. Шкловский считал открытие квазаров величайшим достижением астрономии XX века.
Современную астрономию называют всеволновой. Возможность работы по всему диапазону электромагнитного спектра принесла революционные открытия и неизмеримо повысила уровень наших знаний о самых различных объектах Вселенной. Всего 50 лет назад астрономия напоминала человека, лишенного радости видеть цвета и краски окружающего мира. И вдруг в какой-то момент на него обрушилось буйство красок и вся окружающая природа предстала в совершенно ином виде. Переворот в астрономии был еще радикальнее, поскольку наблюдения в видимом оптическом диапазоне ограничиваются поглощением света в межзвездной среде. С освоением новых участков спектра у астрономов в буквальном смысле слова упала с глаз пелена.
Теперь посмотрим, что дали наблюдения неба в инфракрасной области спектра, располагающейся на шкале длин волн между видимым светом и радиоволнами. Человеческий глаз, как уже говорилось, не в состоянии увидеть инфракрасное излучение. Мы можем его только почувствовать, поднеся, скажем, руку к горячему утюгу. Поэтому в инфракрасной астрономии в качестве приемников радиации используются специальные устройства, например, хорошо известная каждому школьнику термопара.
Здесь следует вкратце остановиться на одном важном обстоятельстве. Мы уже говорили о существенном ограничении наблюдений в видимом диапазоне: свет заметно поглощается межзвездной средой. В то же время в видимом диапазоне земная атмосфера довольно прозрачна. Атмосфера очень сильно «режет» коротковолновую часть спектра, начиная с ультрафиолетового излучения; что касается инфракрасного (ИК) диапазона, то молекулы воды и углекислого газа, всегда присутствующие в атмосферном воздухе, поглощают в этом диапазоне довольно сильно. К счастью, между полосами молекулярного поглощения воды и углекислоты есть узкие окна, в которых можно вести наблюдения. Кроме того, если поднять прибор на аэростате, шаре, зонде, задача наблюдения существенно облегчается. В ряде случаев можно проводить наблюдения в ИК-диапазоне даже с высокогорных обсерваторий. Что касается радиодиапазона, то атмосфера практически прозрачна для радиоволн длиной от 1 сантиметра до 20 метров. Теперь ясно, что сам факт поглощения электромагнитных колебаний земной атмосферой в значительной мере стимулировал проведение спектральных измерений на больших высотах и в космосе. В настоящее время есть проекты размещения в космосе и оптического телескопа, причем с довольно большим зеркалом, диаметром более двух метров. Отсутствие атмосферы даже для видимого диапазона даст огромный выигрыш при наблюдениях.
Но вернемся к ИК-астрономии. Можно без преувеличения сказать, что измерения в ИК-диапазоне внесли решающий вклад в исследование химического состава атмосфер планет. Благодаря именно этим измерениям нам удалось узнать, что атмосфера Венеры состоит не только из углекислого газа, она содержит такие экзотические молекулы, как угарный газ, хлористый и фтористый водород, а в облаках Венеры присутствует серная кислота. В атмосферах Венеры и Марса удалось обнаружить пары воды и определить их количество, в облаках Юпитера нашли аммиак, узнали, из чего состоят кольца Сатурна, оценили химический и минералогический состав грунта Луны, Марса, астероидов, спутников Юпитера, Сатурна, Урана, Нептуна.
Наблюдая Юпитер и Сатурн, удалось открыть внутренние потоки тепла от этих планет. Другими словами, оказалось, что и Юпитер и Сатурн отдают в пространство больше тепла, чем получают его от Солнца.
С помощью ИК-измерений удалось сделать поразительные открытия не только в мире планет, но и в мире звезд. Именно здесь и сказалось решающее преимущество ИК-излучения перед видимым светом: пыль и газ в межзвездном пространстве поглощают видимый свет во много раз сильнее, чем излучение в ИК-диапазоне. |