Изображение остатка сверхновой Кассиопеи Α в гамма-диапазоне.
Так оно и оказалось. Некоторые максимумы гамма-излучения на небе удалось отождествить с облаком в созвездии Орион, где происходит рождение звезд. Это облако находится сравнительно недалеко от нас: около 500 пс. Еще ближе (150 пс) к нам звезда ρ Змееносца. Около нее также расположено облако — источник гамма-излучения. На основе результатов спутниковой гамма-астрономии удалось даже построить «гамма-карту» части нашей Галактики, поскольку гамма-излучение в Галактике подчеркивает ее крупные детали.
Природа некоторых гамма-всплесков не понята до настоящего времени. Так, например, настоящая загадка — гамма-излучение от пульсара Паруса-Х. Он слабо светит в рентгене, но дает заметные всплески в радио-, в оптическом и в гамма-диапазоне. Так вот, оказывается, что за один и тот же промежуток времени в радиодиапазоне можно видеть один импульс, а в гамма- и оптическом — два. Почему — неясно.
5 марта 1979 года на небе был зарегистрирован мощный гамма-всплеск. Нельзя исключить того, что источником этого всплеска является вспыхнувший молодой пульсар — остаток взрыва Сверхновой, происшедшего в Большом Магеллановом Облаке. Есть на небе и гамма-источник CG 195+4, который излучает лишь гамма-кванты, не проявляя активности ни в каком другом диапазоне. Было открыто гамма-излучение от знаменитого квазара 3С 273. Мощность его гамма-излучения в сотни раз превышает полную мощность излучения всех звезд нашей Галактики. Причем она примерно такая же, как в радио и в оптическом диапазоне.
Даже из этих примеров видно, какие широкие перспективы открывает и какие важные задачи ставит перед астрофизиками гамма-астрономия.
Для исследований самых жестких гамма-квантов с энергиями 10<sup>2</sup>–10<sup>4</sup> ГЭВ используются… оптические телескопы! Эта на первый взгляд невозможная вещь объясняется просто.
При прохождении сверхжестких гамма-квантов через атмосферу возникают очень энергичные электроны, вызывающие знаменитое «черенковское» излучение. Это излучение и можно в конце концов поймать при помощи оптического телескопа.
Итак, электромагнитные колебания являются сейчас основным источником информации в современной астрономии. Можно смело сказать, что астрономия не возникла бы как наука, если бы у нее не было глаз. Сначала это были просто глаза человека, затем они вооружились оптическими телескопами, затем появились радиотелескопы. Сейчас термины «рентгеновская, гамма-астрономия» общеприняты — астрономия стала всеволновой.
Но только ли электромагнитный спектр несет нам информацию о космосе? Конечно, нет. Ведь космос буквально «нашпигован» заряженными и незаряженными частицами. Это ядра атомов различных химических элементов, просто протоны высоких энергий и некоторые другие частицы. Все они объединяются в так называемые космические лучи. Исследование космических лучей также несет информацию о грандиозных катаклизмах, происходящих во Вселенной, в частности, о взрывах Сверхновых звезд, процессах в ядрах галактик.
На страницах оригинальных статей и обзоров все чаще появляется новый термин — нейтринная астрономия. Действительно, эти неуловимые из-за своего чрезвычайно слабого взаимодействия с веществом частицы могут дать исключительно важную информацию о внутреннем строении звезд, в том числе и нашего Солнца. Изучение реликтовых нейтрино, оставшихся после Большого Взрыва, принесло бы неоценимую информацию о первых мгновениях жизни нашей Вселенной. Но регистрация нейтрино — задача исключительной сложности. Это, кстати, мы увидим, когда речь пойдет о нашем Солнце и проблеме солнечных нейтрино. Тем не менее многие ученые считают, что нейтринная астрономия уже к концу этого века скажет свое веское слово. И мне кажется, что это будет очередная порция сюрпризов и загадок, которые природа до поры до времени держит про запас, а потом вдруг дает возможность прикоснуться к своим тайнам, то ли, чтобы подхлестнуть любопытство человека, то ли лишний раз щелкнуть его по носу. |