Изменить размер шрифта - +

Итак, все наши модели заметно отличаются друг от друга. Каждая звезда имеет свою структуру — например ядро, или внешнюю конвективную зону. И выражение Эддингтона: «Нет ничего проще, чем звезда», — кажется уже не столь очевидным. А ведь мы пока рассмотрели лишь самые простые модели звезд. Сложности дальше будут расти, как снежный ком.

Рассмотрим, к примеру, модель звезды-гиганта, радиус которой в 21 раз больше радиуса Солнца. Пусть масса гиганта равна 1,3 массы Солнца, а светимость больше в 226 раз. При расчетах структуры такой звезды выяснилась удивительная вещь.

В центре звезды водорода нет, он весь выгорел. Там находится маленькое ядро, состоящее почти целиком из гелия. Радиус его — всего лишь одна тысячная полного радиуса звезды. Поскольку водорода там уже нет, термоядерные реакции в ядре не идут, а температура ядра (40 миллионов градусов) постоянна. Поэтому ядро называется изотермическим. Однако даже 40 миллионов градусов недостаточны, чтобы «зажечь» тройной α-процесс, и источников энергии в ядре нет.

Вокруг ядра расположена тонкая оболочка, в которой идут реакции С – N – О-цикла. Толщина оболочки — чуть меньше радиуса ядра. Далее идет слой, в котором энергия переносится излучением. Толщина его составляет примерно одну пятую радиуса звезды. А далее идут наружные слои гиганта, охваченные бурной конвекцией. Они содержат около 70 процентов массы всей звезды.

Но тогда мы приходим к удивительному выводу. Небольшое ядро гиганта весит почти одну третью его часть. И его плотность составляет 3,5 · 10<sup>5</sup> г/см<sup>3</sup>. Другими словами, чайная ложка вещества ядра весит около тонны. Возникает резонный вопрос. Неужели вещество ядра красного гиганта тоже можно считать газом?

Ответ на поставленный вопрос однозначен: «Да». Но газ этот особенный, и, чтобы объяснить все его свойства, мы должны будем поговорить о том, как устроены белые карлики — широко распространенный тип звезд в нашей Галактике. Каковы их основные свойства?

Светимость их очень мала: иногда в тысячи раз меньше солнечной. В то же время масса их примерно равна массе Солнца. Но при солнечной массе эти звезды имеют размеры, сравнимые с размерами планеты.

Сразу же возникает вопрос о температуре внутри такой звезды. Если мы попробуем оценить ее по формуле T = 14(M · R)/(M · R) миллионов градусов, то получим совершенно несуразный и противоречивый результат. Температура получится равной сотням миллионов градусов. Это, в свою очередь, означает что должны идти высокотемпературные реакции, в частности, тройной α-процесс. Крохотные звезды должны выделять огромное количество энергии и светить, как маяки на ночном небе. Но на самом деле их светимость очень мала. В чем здесь дело?

До сих пор во всех «звездных» оценках мы пользовались лишь законом Клайперона и законом всемирного тяготения. Последний исключений не знает. Тогда остается сделать вывод о том, что вещество белого карлика не идеальный газ, и закон Клайперона здесь не работает. Но что же это такое? Быть может, вещество белых карликов жидкость или твердое тело?

Нет. Плотность жидкости или твердого тела не может превышать 20 г/см<sup>3</sup>. При этой плотности атомы вещества уже предельно тесно расположены друг к другу. Расстояние между ними порядка 10<sup>–8</sup> сантиметра. Но плотность белого карлика больше тонны в кубическом сантиметре. Это означает, что внутри белого карлика нет атомов! Там есть очень плотный ионизированный газ, состоящий из ядер атомов и отдельных электронов.

Итак, вещество белого карлика — газ, но газ чудовищной плотности. Поведение его никак нельзя описать в рамках законов школьной физики. Здесь уже нужна квантовая механика. Она, и только она, в состоянии объяснить свойства белых карликов.

Быстрый переход