Изменить размер шрифта - +

Итак, вещество белого карлика — газ, но газ чудовищной плотности. Поведение его никак нельзя описать в рамках законов школьной физики. Здесь уже нужна квантовая механика. Она, и только она, в состоянии объяснить свойства белых карликов.

Великий физик Паули знаменит не только тем, что он предсказал существование нейтрино. Он также ввел в квантовую механику основополагающий принцип, названный его именем — принцип Паули, который запрещает находиться на одной и той же квантовой орбите в атоме более чем двум электронам. Принцип этот универсален, его смело можно назвать законом природы, исключений он не знает.

Но при чем здесь атомы? Ведь спрессованное до немыслимых плотностей вещество белого карлика не содержит атомов. Там есть лишь ядра атомов и электроны. Оказывается, что электронный газ в белом карлике является чисто квантовой системой, и, говоря другими словами, словами квантовой механики, каждый электрон в газе может занимать строго определенное состояние. Но число состояний ограничено, конечно. Более того, число электронов в каком-либо объеме белого карлика больше числа разрешенных состояний.

Тогда, поскольку принцип Паули нарушать нельзя, электроны, находящиеся в одном и том же объеме, должны отличаться друг от друга, должны обладать различными скоростями. Чем больше электронов в одном состоянии, тем больше отличаются их скорости. Электронов много, и все они движутся с разными скоростями в силу принципа Паули. В обычном газе изменение температуры влияет на скорости частиц. В нашем же, электронном газе, где работает принцип Паули, нагревание или охлаждение практически не повлияет на скорости электронов.

Подобный газ называется вырожденным электронным газом. В принципе его можно охладить до абсолютного нуля, а движение электронов все равно будет продолжаться. Поэтому и давление вырожденного газа мало зависит от температуры частиц и определяется лишь плотностью.

Интересно, что в недрах обычных звезд газ не вырожден. «Критическая» плотность вырождения для «нормальной» звезды с температурой в центре около 10 миллионов градусов должна быть больше 1000 г/см<sup>3</sup>. Как мы знаем, такие плотности там не достигаются. Белые карлики, эти удивительные звезды, обладают еще некоторыми необычными свойствами. Во-первых, их масса тем больше, чем меньше радиус. Во-вторых, существует некоторое предельное значение массы, при котором давление вырожденного газа уже не может сопротивляться воздействию гравитации. Теория показывает, что белых карликов с массой больше чем 1,43 М в природе существовать не может.

Мы забыли сказать несколько слов о причинах светимости белых карликов. Это отнюдь не праздный вопрос. Ведь водорода в них нет, он весь сгорел, а другие реакции в центре карлика, как мы видели, не идут. Но светимость-то, хоть и небольшая, есть. В чем здесь дело?

Во-первых, ядерные реакции могут идти в «атмосфере» белого карлика. Водород из межзвездной среды может попадать на его поверхность и служить затем ядерным горючим в тонком приповерхностном слое звезды. Во-вторых, белый карлик сам по себе имеет огромные запасы тепловой энергии. Время его охлаждения — сотни миллионов лет.

Белые карлики — одно из самых удивительных творений природы. Но, кроме всего прочего, они играют существенную роль в проблемах звездной эволюции. К этому вопросу мы вернемся несколько позже, а сейчас посмотрим снова на изотермическое ядро красного гиганта. Теперь нетрудно видеть, что оно имеет все свойства белого карлика! Но такая сложная структура звезды не может не вызвать следующего вопроса: каким образом в центре гиганта мог образоваться белый карлик — звезда с удивительными свойствами?

Для ответа на поставленный вопрос, хотя на первый взгляд это может показаться и непоследовательным, посмотрим, что будет с нашим Солнцем через миллиарды лет. Ведь и Солнце начнет когда-нибудь стареть.

Быстрый переход