Изменить размер шрифта - +
Нам известно, что младенцы становятся детьми, а дети взрослыми, но эти процессы всегда вызывают у нас удивление — мы предпочитаем, чтобы природа вещей оставалась неизменно, именно поэтому «превращение» так сложно для нашего понимания.

В первых секундах существования нашей Вселенной можно обнаружить еще более трудный для понимания аспект. Откуда взялись Законы? Зачем нужны протоны, электроны, кварки, глюоны? Обычно мы делим процессы на две принципиально различные причинно-следственные группы: начальные условия и правила их преобразования с течением времени. Для солнечной системы, к примеру, начальными условиями являются положения и скорости всех планет в выбранный момент времени; правила — это законы тяготения и движения, определяющие, как эти положения и скорости будут меняться в будущем. Однако в самый первый момент Вселенной начальных условий там, судя по всему, не было. Даже там  еще не существовало! Значит, все  зависело от правил. Откуда же взялись эти правила? Нужно ли было их создать? Или они просто находились в каком-то невообразимом безвременном состоянии существования и ждали, когда их позовут? Или же они развились в первые моменты существования Вселенной, когда появилось Нечто — и в результате Вселенная создала свои собственные правила вместе с пространством и временем?

В двух недавно вышедших книгах известные ученые исследуют механизм создания законов. Изданная последней книга Стюарта Кауффмана «Investigations»[5] 2000 г. ориентирована, главным образом, на биологов и экономистов, но начинается она с законов физики. Кауффман предлагает новый подход к ответу на старый вопрос «Что такое жизнь?»: он определяет форму жизни как автономного агента, то есть любой объект или систему, которая способна к перенаправлению энергии и размножению.

«Автономность» в данном случае означает, что система сама создает правила, регулирующие ее поведение. Такие жизненные формы могут отличаться от общепринятых. Например, квантово-механический вакуум — это бурлящая масса, состоящая из частиц и античастиц, которые возникают и аннигилируют поразительно сложным образом. Вакуум обладает достаточной сложностью, чтобы самоорганизоваться в виде автономного агента. И если бы это случилось, то квантовая механика могла бы создать свои собственные законы.

Еще одна заслуживающая внимания книга, посвященная той же теме, — это «The Life of the Cosmos»[6] 1997 г. за авторством Ли Смолина. В ней автор задается вопросом: могут ли Вселенные эволюционировать? Характерной чертой нашей Вселенной является существование черных дыр. Это области пространства-времени, которые обладают настолько большой массой, что свет (и материя) не могут выйти за их пределы.

Возникают такие объекты в результате коллапса массивных звезд. Раньше черные дыры считались редкостью, теперь же кажется, что они встречаются по всему космосу, например, в центре большинства галактик. Теоретические изыскания показывают, что константы нашей Вселенной обеспечивают необычайно благоприятные условия для образования черных дыр.

Почему? Смолин доказывает, что каждая черная дыра является также и проходом в соседнюю Вселенную. Правда у нас нет возможности узнать, что же находится по другую сторону, так как ничто не может покинуть пространство черной дыры. Может оказаться, что в соседней Вселенной фундаментальные константы отличаются от наших. Значит, Вселенные способны размножаться, отпочковывая новые Вселенные посредством черных дыр — естественный отбор при этом будет на стороне тех Вселенных, которые смогли оставить наибольшее потомство. Фундаментальные константы в таких вселенных автоматически будут соответствовать необычайно благоприятным условиям для образования черных дыр. Так что, возможно, мы живем в одной из таких отпочковавшихся Вселенных.

Быстрый переход