Изменить размер шрифта - +
Вполне возможен и быстрый перебор всей этой информации. Главная трудность применения ЭВМ в другом: нет критериев для выбора нужного физэффекта. Нет правил, позволяющих уверенно сказать: в данном случае этот эффект не годится, а вот тот эффект подойдет…

Обратимся для наглядности к конкретной задаче.

Задача 9.3. Схема электроконтактной наплавки проста. На поверхности заготовки (допустим, это вал, диаметр которого надо увеличить) размещают присадочную проволоку и прижимают ее электродом-роликом. Заготовку и ролик вращают, подводя к ним импульсы тока, расплавляющие проволоку. При многих достоинствах способ имеет существенный недостаток — быстро возникают дефекты поверхности ролика (подплавленные участки, раковины и т. д.). Приходится прерывать процесс, менять ролик. Расходуются ролики быстро, поэтому их необходимо восстанавливать. Для этого с ролика снимают стружку, а затем обновляют рабочую часть поверхности, напрессовывая электропроводный материал. Восстановленный таким образом ролик имеет весьма ограниченный срок службы из-за сравнительной непрочности напрессованного слоя. Строго говоря, даже после одного оборота напрессованный на ролике слой уже деформируется — из-за этого снижается точность обработки. Какой эффект следует применить, чтобы решить задачу?

Даже имея достаточно полный перечень физэффектов и их сочетаний, невозможно сразу ответить на этот вопрос. Перед нами не задача, а ситуация, которая переводится во множество задач, имеющих разные ответы. Ошибка на этом — начальном! — этапе решения может привести в тупик: никакие эффекты или сочетания эффектов не дадут удовлетворительного решения. Ошибкой, например, был бы перевод исходной ситуации в задачу о повышении прочности напрессованного слоя. Аналогичную ошибку мы рассмотрели при разборе задачи 4.7, когда локальная изобретательская задача на повышение срока действия оборудования подменялась глобальной исследовательской задачей борьбы с коррозией металлов. Имеющаяся схема наплавки должна быть сохранена или упрощена, но вредный фактор (деформация поверхности ролика) необходимо исключить — такова в данном случае формула перехода от ситуации к мини-задаче. Это лишь первый шаг на долгом пути к ответу. Нужно проанализировать задачу, выявить физическое противоречие, сформулировать ИКР-2, построить модель из маленьких человечков. После этого действительно можно обратиться к перечню физэффектов. Собственно, перечень даже не понадобится: анализ однозначно укажет «приметы» искомого физического эффекта. В этом основная «закавыка» в применении ЭВМ: без анализа нельзя перейти от ситуации к эффекту, а тщательно проведенный анализ сводит перебор к сравнению нескольких вариантов — для чего тогда ЭВМ?.

 

Попробуйте решить задачу 9.3 перебором вариантов: полезно еще раз убедиться в неэффективности этого метода. А потом проведите тщательный анализ по АРИЗ, обратив особое внимание на выделение оперативной зоны и применение метода ММЧ. Физический эффект, который необходимо использовать для решения задачи, хорошо известен из школьного курса физики.

 

«Указатели» первого поколения построены на неглубоком информационном фундаменте: по каждому эффекту подобрано в среднем 4–5 изобретательских примеров (патентов, авторских свидетельств). Столь скромная информационная база (ее создание потребовало, однако, немалой работы по анализу патентного фонда) годилась только для первоначальной иллюстрации наиболее типичных особенностей физэффектов. Опубликованные разделы «Указателя» второго поколения имеют более прочную информационную основу: удалось собрать по 80–100 примеров на использование каждого эффекта. Это не только значительно глубже раскрыло возможности физэффектов, но и позволило выявить некоторые правила «изобретательской физики». Оказалось, например, что физэффекты определенным образом связаны с цепочками развивающихся вещественных структур, на которых эти эффекты реализуются.

Быстрый переход