Заметить исчезновение четырех десятимиллионных грамма из общей массы порядка тысячи граммов было за пределами возможностей химии XIX века. Поэтому даже наиболее точные измерения не обнаружили противоречия в законе сохранения массы. Закон сохранения массы используется до сих пор при рассмотрении химических реакций.
Закон сохранения массы и энергии
В ядерных реакциях изменения энергии столь значительны, что эквивалентностью массы и энергии уже нельзя пренебречь. Если следить за изменением одной только массы, кажется, что закон сохранения нарушается.
Чтобы убедиться в этом, рассмотрим соотношение между массой и энергией в единицах атомной шкалы масс. Тогда в уравнение е = тс<sup>2</sup> будет входить не 1 г масссы, а масса 1 по атомной весовой шкале, приблизительно равная весу ядра атома водорода-1, самого легкого из известных атомных ядер. В действительности масса 1 по атомной шкале равна 1,67·10<sup>-24</sup> г.
Несмотря на громадную величину с<sup>2</sup>, энергия, которой эквивалентна такая ничтожная масса, составляет только 0,0015 эрг.
В обычных повседневных масштабах 0,0015 эрг действительно величина небольшая, но по атомной шкале она равна примерно одному миллиарду электронвольт — это уже внушительная цифра. По данным последних измерений, масса 1 по шкале атомных весов эквивалентна 0,931478 Гэв или 931,478 Мэв.
Если положить массу ядра водорода равной 1,00797, она будет эквивалентна энергии 0,938 905 Бэв, а масса четырех таких ядер водорода эквивалентна энергии 3,75562 Гэв. С другой стороны, масса ядра гелия, равная 4,00280 по шкале атомных весов, эквивалентна энергии 3,72803 Гэв. Когда четыре ядра водорода превращаются в одно ядро гелия, потеря массы, следовательно, составляет 0,02759 Гэв или 27,59 Мэв. Измеренная величина выделяющейся при этой реакции энергии оказалась очень близка к теоретической. Исследования показали, что во всех ядерных реакциях такого типа выделенная энергия соответствует исчезнувшей массе согласно уравнению Эйнштейна. В результате стало привычным говорить не о законе сохранения только массы или только энергии, а о законе сохранения массы и энергии. Однако можно говорить просто о законе сохранения энергии, имея в виду, что масса есть форма энергии. Именно так я буду поступать в дальнейшем.
Вернемся теперь к источнику солнечной энергии. Если действительно она возникает за счет превращения ядер водорода в гелий, колоссальная энергия, которая при этом образуется и излучается в окружающее пространство, должна быть сбалансирована эквивалентным исчезновением массы.
Суммарная энергия излучения Солнца, как я уже говорил, равна 5,6·10<sup>27</sup> кал/мин, что эквивалентно 3,8·10<sup>33</sup>эрг/сек. Поделив на с<sup>2</sup>, получим, что излучение этой
энергии эквивалентно потере 4,2·10<sup>12</sup> г в 1 сек, или 276 000 000 т в 1 мин.
По метеоритной теории солнечного излучения, каждую минуту на Солнце попадает 1,2·10<sup>20</sup> г метеоритного вещества. Такая постоянная добавка к солнечной массе уменьшает продолжительность каждого года на две секунды. Потеря массы при превращении водорода в гелий составляет примерно одну тридцатимиллионную прироста массы, требующегося по метеоритной теории. В результате потери солнечной массы за счет ядерных реакций год увеличился бы только на одну секунду за пятнадцать миллионов лет. Изменение длины года трудно обнаружить, и оно не имеет для нас практического значения.
Фотоны
Теперь сделаем наоборот. Рассмотрев массу как проявление энергии, рассмотрим энергию как проявление массы. Фотон, например, обладает определенной величиной энергии, а она должна быть в свою очередь эквивалентна определенной величине массы.
Рис. |