Изменить размер шрифта - +
В таком случае общая скорость двух движущихся шаров равна не 20 см/сек, а нулю. Следовательно, если два неупругих шара сталкиваются, прилипают и останавливаются в точке столкновения, никакого изменения суммарной скорости не происходит. Нуль остается нулем.

В случае настоящих упругих бильярдных шаров ситуация иная. Каждый шар внезапно меняет направление движения. Шар, движущийся на север, отскакивает на юг, причем скорость его меняется от +10 см/сек до -10 см/сек. Второй шар отскакивает на север, и скорость его меняется от -10 см/сек до +10 см/сек. Однако суммарная скорость остается равной нулю. Если шары недостаточно упруги, то может случиться, что один шар изменит скорость от +10 см/сек до -6 см/сек. Тогда другой изменит скорость с -10 см/сек до +6 см/сек. Результатов такого центрального столкновения множество, но они ограничены условием обязательного сохранения суммарной скорости.

Однако можно усложнить задачу. Что если движущийся бильярдный шар ударяет неподвижный, но не по центру? Что тогда?

Если вы когда-нибудь следили за игрой в бильярд, вы знаете ответ на этот вопрос: шары меняют направление. Неподвижный шар начинает двигаться налево (если удар был справа от центра), а шар, двигавшийся вначале, тоже меняет направление и начинает двигаться направо. При этом никогда не наблюдалось, чтобы оба шара двигались в одну сторону с первоначальным направлением.

Рис. 1. Разложение скорости

 

Рассмотрим прямолинейное движение в двух измерениях (скажем, на плоской поверхности бильярдного стола). Такое движение всегда можно разложить на две составляющие под прямым углом друг к другу. Это делается с помощью построения линий в направлении движения, длины которых пропорциональны величинам скоростей (рис. 1). Величины горизонтальной и вертикальной составляющих скорости можно определить, составив отношение длин сторон прямоугольника к его диагонали. Это отношение можно вычислить, если известны углы геометрической фигуры. Мы не будем касаться таких расчетов, тем не менее рис. 1 как раз соответствует простому случаю, когда прямолинейное движение со скоростью 10 см/сек имеет вертикальную составляющую 5 см/сек и горизонтальную 8,7 см/сек .

Рис. 2. Нецентральное столкновение шаров

 

Вернемся теперь к нецентральному столкновению бильярдных шаров. Если прямолинейное движение каждого шара разложить на составляющие, окажется, что суммы вертикальных составляющих до и после столкновения равны. В случае, изображенном на рис. 2, начальная скорость движущегося шара равна 10 см/сек. После соударения его вертикальная составляющая будет равна 2,5 см/сек, а соответствующая составляющая неподвижного шара -7,5 см/сек. Каждый шар после столкновения имеет горизонтальную составляющую. Однако, как видно из рис. 2, эти составляющие равны по величине и противоположны по направлению (+ 4,35 см/сек и -4,35 см/сек), так что суммарная горизонтальная скорость равна нулю. Это происходит потому, что при описанных условиях движущийся шар после столкновения должен отклониться в одну сторону, а неподвижный — в противоположную. Если бы оба шара отклонились, например, влево от первоначального направления, то возникла бы результирующая горизонтальная составляющая. Все вышесказанное справедливо для столкновения любого числа бильярдных шаров, движущихся в самых разных направлениях. Общая скорость в любом направлении до и после соударения одна и та же.

 

Сохранение импульса

 

Теперь вы, вероятно, начнете подозревать, что «сохранение суммарной скорости» будет иметь место при всех условиях. Подождите — мы еще не рассмотрели всевозможные ситуации.

Предположим, например, что шар ударяет о борт бильярдного стола и отскакивает назад. Стол, неподвижный до удара, остается таким же неподвижным и после него.

Быстрый переход