Изменить размер шрифта - +
Протон и нейтрон получили барионные числа +1 каждый, а антипротон и антинейтрон -1 каждый. Всем лептонам (электрону, позитрону и фотону) приписали нулевые барионные числа. Итак был сформулирован новый закон: суммарное барионное число замкнутой системы постоянно. (Все законы сохранения, рассмотренные нами, были открыты при исследовании явлений обычной повседневной жизни а затем применены к атому. Теперь мы в первый, но не в последний раз встретились с законом сохранения, возникшим непосредственно при изучении явлений, происходящих в субатомном мире.)

Рассмотрим несколько примеров. При радиоактивных превращениях ядро урана-238 распадается на ядро тория-234 и α-частицу (гелий-4). Ядро урана-238 содержит в общей сложности 238 протонов и нейтронов, следовательно, его барионное число 238. Аналогично барионное число тория-234 равно 234, а α-частицы — 4. Поскольку сумма барионных чисел тория-234 и α-частицы равна 238, барионное число в этом процессе сохраняется. Далее, ядро тория-234 излучает β-частицу (т. е. электрон с нулевым барионным числом) и превращается в ядро протактиния-234. Следовательно, барионное число снова сохраняется. В действительности оно сохраняется во всех известных радиоактивных превращениях. А что происходит с барионным числом элементарных частиц? Если нейтрон распадается на протон и электрон, барионное число сохраняется, так как сумма барионных чисел протона и электрона равна единице. Точно так же сохраняется барионное число и при распаде антинейтрона на антипротон и позитрон.

Если протон и антипротон, взаимодействуя, превращаются в нейтрон и антинейтрон, суммарные барионные числа до и после реакции равны. Если взаимодействуют протон и антипротон, образуя два γ-кванта (или любое число их), закон сохранения барионного числа снова выполняется, так как +1–1 = 0 + 0.

Во всех известных до сих пор атомных и субатомных процессах барионное число сохраняется. Физики ни разу не сталкивались с нарушением закона сохранения барионного числа. Теперь становится понятно, почему протон не превращается спонтанно в позитрон, а антипротон — в электрон. В первом случае барионное число +1 стало бы нулем, а во втором — в нуль превратилось бы барионное число -1. Ни одно из этих превращений невозможно без нарушения закона сохранения барионного числа.

В самом деле, насколько мы знаем, протон и антипротон — наименее тяжелые из известных барионов. Именно поэтому они стабильны. Любое спонтанное превращение означало бы появление менее тяжелых частиц. Но любая более легкая частица — не барион, и, следовательно, за кон сохранения барионного числа был бы нарушен.

По закону сохранения электрического заряда, казалось бы, ни один электрон не возникает без одновременного рождения позитрона. Согласно тому же закону и закону сохранения барионного числа, ни один протон не возникает без одновременного рождения антипротона. В окружающей нас Вселенной электронов и протонов сколько угодно, а позитроны и антипротоны исключительно редки. Почему?

Убедительного ответа на этот вопрос еще нет. Одна гипотеза предполагает, что, когда возникла наша Вселенная, частиц и античастиц было равное количество, но они были как-то разделены. Возможно, кроме нашего мира существует также антимир. Все вещества нашего мира состоят из атомов с ядрами из протонов и нейтронов и с электронами во внешних областях атома. В антимире антиматерия должна состоять из атомов с ядрами из антипротонов и антинейтронов и с позитронами вместо электронов во внешних областях атома. В антимире обычное вещество встречалось бы исключительно редко. (До недавнего времени антивещество оставалось просто теоретической концепцией. Однако в 1965 году физики Брукхейвенской национальной лаборатории получили очень недолговечные ядра из антипротона и антинейтрона. Известно, что ядро водорода-2 состоит из протона и нейтрона. Водород-2 часто называют дейтерием, поэтому систему протон + нейтрон назвали дейтроном, а систему антипротон + антинейтрон — антидейтроном.

Быстрый переход