Такая точность измерений вполне достаточна (и даже более чем достаточна) в нашей повседневной жизни или даже в обычном микромире, где точность зависит только от нас. Однако в мире атома и субатомных частиц принцип неопределенности принципиально ограничивает точность данных, получаемых нами. В субатомном мире одна триллионная сантиметра — значительная величина, и, если электрон локализован с меньшей точностью, его положение фактически неопределенно. Если же его местоположение определено более точно, неопределенность его импульса становится соответственно больше, неточность 10<sup>-18</sup> г·см/сек при определении величины импульса электрона является уже неприемлемо большой.
Когда был впервые сформулирован принцип неопределенности, многих физиков (включая и Альберта Эйнштейна) обеспокоила мысль о том, что имеется неизбежный предел наших знаний о Вселенной. Справедливость принципа неопределенности означает, что природа ведет «нечестную игру». Однако принцип неопределенности оказался очень полезным. Физики-теоретики смогли объяснить, каким образом атомы поглощают и излучают энергию, предположив, что все частицы обладают волновыми свойствами, причем чем легче частица, тем заметней эти свойства. Электрон, являющийся самой легкой частицей, должен особенно отчетливо проявлять волновые свойства, и они на самом деле были обнаружены в 1927 году (в том же году, когда был сформулирован принцип неопределенности). Раз электрон обладает волновыми свойствами, нельзя говорить о его точном положении, словно это крошечный бильярдный шарик, так как он не является таковым. Принцип неопределенности, парадоксальный, если электрон представлять в виде крошечного бильярдного шарика, стал единственной возможностью придать электронной волне какой-то смысл.
Поскольку принцип неопределенности оказался очень важным при детальном исследовании ядерного поля, я поведу свой рассказ в этом направлении, чтобы со временем вернуться к нейтрино.
Принцип неопределенности и законы сохранения
В 1930 году на конгрессе физиков в Брюсселе Эйнштейн пытался доказать ошибочность принципа неопределенности. Сделать это ему не удалось. Соображения которые он привел, чтобы доказать несостоятельность принципа неопределенности, как показал датский физик Нильс Бор, были ошибочны, и Эйнштейн, так сказать, высек самого себя.
В процессе дискуссии Эйнштейн показал, что, если принцип неопределенности верен, его можно выразить через неопределенность энергии Δе, умноженную на неопределенность времени Δt, по аналогии с соотношением Гейзенберга, т. е.
ΔеΔt ≥ 10<sup>-27</sup>.
Согласно эйнштейновской версии принципа неопределенности, чем точнее мы определяем энергию системы, тем менее точно знаем момент времени, в который энергия действительно имеет это определенное значение, и наоборот.
В обычных условиях энергию системы определяют в течение достаточно длинного отрезка времени, поэтому можно в принципе определить ее с большой точностью и убедиться, что закон сохранения энергии выполняется с такой же большой точностью.
А если необходимо определить энергию системы в течение, скажем, одной триллион-триллионной доли секунды? В этом случае время нужно определить по крайней мере с такой же степенью точности, следовательно, неопределенность энергии будет очень большой. В этом случае нельзя сказать, имеет ли система такую энергию, которую она «должна» иметь согласно закону сохранения энергии, так как из-за неточности измерения энергия системы может быть значительно больше или значительно меньше истинного значения.
Предположим, школьнику запрещается в любое время неучтиво относиться к строгому учителю под страхом суровой порки. Есть ли у учителя основания считать, что мальчишка не высовывает язык каждый раз, когда он поворачивается к нему спиной? Учитель может обернуться и не увидеть высунутого языка, так как ученик спрячет язык быстрее, чем учитель повернется. |