Физики установили, что при таком выборе во всех субатомных процессах с участием μ-мезонов закон сохранения лептонного числа выполняется. А поскольку μ-мезон является лептоном, чтобы не впадать в заблуждение, его назвали мюоном. Конечно, существуют отрицательные и положительные мюоны.
Что касается π-мезона, он оправдывает свое название. Прежде всего он и не лептон, и не барион. Если ему приписать нулевые лептонное и барионное числа, то во всех субатомных процессах с участием π-мезона законы сохранения лептонного и барионного чисел будут выполняться. Тем не менее, по аналогии с мюоном π-мезон стали все чаще и чаще называть пионом. Пион существует в двух зарядовых состояниях: положительный пион (π<sup>+</sup>), являющийся частицей, и отрицательный пион ('π<sup>-</sup>), представляющий собой античастицу. В отличие от электрона и мюона пион может существовать и в виде незаряженной частицы — нейтрального пиона (π<sup>0</sup>), которая немного легче заряженного пиона — ее масса в 264 раза больше массы электрона, а живет она значительно меньшее время, распадаясь в течение 1,9·10<sup>-16</sup> сек. Особенно необычно то, что нейтральный пион, подобно фотону, является своей собственной античастицей.
Если мюон только более тяжелая разновидность электрона, он должен дублировать его функции в атоме, что наблюдается в действительности. Электрон, находящийся во внешних областях атома, можно представить как частицу, вращающуюся вокруг атомного ядра по определенным орбитам, или как волну, имеющую определенные энергетические состояния. При определенных условиях отрицательные мюоны на короткое время занимают место электронов в атомах. (А положительные мюоны, вероятно, могут занять место вращающихся позитронов в атомах антивещества.) Атом, в котором отрицательный мюон замещает электрон, называется мезоатомом.
Конечно, разница масс мюона и электрона приводит к некоторым изменениям. Момент количества движения частицы, вращающейся вокруг ядра, кроме всего прочего зависит от массы частицы и ее расстояния от ядра.
Так как мюон в 207 раз тяжелее электрона, расстояние его от ядра должно быть меньше, чтобы при замене электрона мюоном момент количества движения не менялся.
В очень тяжелых атомах, внутренние электроны которых расположены близко к ядру, отрицательный мезон может так близко вращаться вокруг ядра, что почти вся его орбита будет находиться внутри ядра. Это обстоятельство еще раз показывает, насколько слабо он взаимодействует с протонами и нейтронами. (И снова мюон напоминает электрон, который тоже слабо взаимодействует с нуклонами. В противном случае ядро поглотило бы электроны и вещество в обычном его виде не существовало бы.)
Если мюон в мезоатоме представить в виде волны, имеющей определенные энергетические состояния, из-за большой массы энергия этих уровней соответственно выше, чем у электрона, а расстояние между соседними уровнями соответственно больше. Фотоны, излучаемые при переходе мюона в мезоатоме с одного энергетического уровня на другой, тоже имеют соответственно большую энергию, так что излучение мезоатомов находится в области рентгеновских лучей, в то время как обычные электронные атомы излучают видимую и ультрафиолетовую части спектра.
Конечно, мезоатомы так же нестабильны, как и мюоны, ибо когда мюон распадается в течение примерно одной миллионной доли секунды, атомное ядро заменяет его обычным электроном.
Глава 12. Мюонное нейтрино
Распад пиона
Если мюон действительно просто тяжелый электрон, при взаимодействии частиц он должен в точности копировать поведение электрона Например, отрицательный пион распадается, образуя отрицательный мюон, а положительный пион — положительный мюон, причем образование этих мюонов походит на рождение электронов. А поскольку электрон (или позитрон) рождается вместе с антинейтрино (или нейтрино), не будут ли возникать эти частицы и при образовании мюонов? Оказывается, нейтрино и антинейтрино действительно появляются при распаде мюонов, и мы можем записать:
'π<sup>-</sup>→ μ<sup>-</sup>+ 'ν
π<sup>+</sup>→'μ<sup>+</sup>+ ν. |