Когда заряжается аккумуляторная батарея, электрическая энергия переходит в химическую; когда она разряжается, происходит обратный процесс.
В этом отношении тепло занимает особое место. Любая другая форма энергии при определенных условиях полностью преобразуется в тепловую. Однако тепло не может превратиться в любую другую форму энергии полностью. Часть энергии всегда остается в виде тепла. Более того, если одна форма нетепловой энергии переходит в другую, это превращение никогда не происходит полностью: некоторая часть энергии всегда переходит в тепло. Следовательно, энергию удобно подразделять на тепловую и все другие формы, включая работу. Поэтому неудивительно, что тепло требует специального рассмотрения и имеет даже собственную единицу измерения. (Не надо забывать, что тепло было тщательно изучено еще до того, как его отнесли к формам энергии.) Единица тепла — калория. Это количество тепла, необходимое для того чтобы поднять температуру одного грамма воды от 14,5 °C до 15,5 °C.
Более распространенная единица энергии, которая чаще всего используется для других ее форм, составлена из грамма, сантиметра и секунды. Если выразить энергию как 1/2 mv<sup>2</sup>, то единица энергии будет иметь размерность г·см<sup>2</sup>/сек<sup>2</sup>. Для большего удобства физики договорились назвать эту единицу односложно, для чего было придумано слово эрг (от слова «энергия»). Эрг — малая единица энергии. Чтобы поднять 1 грамм вещества на короткое расстояние в 1 сантиметр, преодолевая земное притяжение, надо затратить 980,7 эрг.
Теперь можно задать один важный вопрос. Когда определенное количество какой-нибудь нетепловой энергии полностью превращается в тепловую, всегда ли выделяется одно и то же количество тепла? Всегда ли х эрг превращается в у калорий, т. е. сохраняется ли, другими словами, энергия?
Необходимые эксперименты провел в сороковых годах XIX века английский физик Джеймс Джоуль. Он пытался превратить энергию в тепло самыми разными способами, например: заставлял двигаться воду или ртуть с помощью колеса с лопастями, сжимал воздух, пропускал воду через узкие трубки, вращал проволочную катушку между полюсами магнита, пропускал через проволоку электрический ток. В каждом случае он измерял потраченную энергию и выделенное тепло. Даже во время своего медового месяца Джоуль не смог побороть искушения измерить температуру вверху и внизу водопада, чтобы узнать, сколько тепла выделяет энергия падающей воды. К 1847 году он установил, что данное количество нетепловой энергии любого вида всегда производит одинаковое количество тепла.
Впоследствии это было подтверждено несчетное число раз, и теперь мы можем сказать, что 41 800 000 эрг эквиваленты 1 кал тепла. Это соотношение называется механическим эквивалентом тепла. В честь Джоуля 10 000 000 эрг принято считать равными 1 джоулю. Следовательно, механический эквивалент тепла 1 калория равен 4,18 джоуля.
В то же самое десятилетие два немецких физика Юлиус Роберт Майер и Герман Людвиг фон Гельмгольц независимо друг от друга привели ряд аргументов в пользу сохранения энергии. Подкрепленные опытами Джоуля, эти аргументы стали в конце концов убедительными. Так был установлен закон сохранения энергии, который является, вероятно, самым фундаментальным и важным обобщением из всех, которые дала наука.
Подобно массе и в отличие от импульса энергия — скалярная величина. Она бывает больше или меньше, но нет положительной или отрицательной энергии.
Предположим, например, что два пушечных ядра одинаковой массы летят навстречу друг другу с одинаковой скоростью. Их импульсы равны и противоположны, так что общий импульс двух ядер равен нулю. Если ядра столкнутся неупруго, они сплющатся и упадут на землю. Но оба ядра обладали кинетической энергией, а она не может исчезнуть. Однако однажды столкнувшись, ядра больше не движутся. Что же случилось с кинетической энергией? Она превратилась в другую форму энергии — тепловую. |