Изменить размер шрифта - +
В своей дискуссии об образовании философа в диалоге «Государство» Платон использовал сократовский аргумент о том, что астрономию нужно изучать таким же способом, как и геометрию. Согласно Сократу, смотреть в небо может быть полезно для развития разума, точно так же как смотреть на геометрические построения полезно для изучения математики, но в обоих случаях настоящее знание приходит только через мысль. «Значит, мы будем изучать астрономию так же, как геометрию, с применением общих положений, а то, что на небе, оставим в стороне…»

Математика – это средство, с помощью которого мы выводим следствия физических законов. Более того, это незаменимый язык, на котором излагаются сами физические законы. Она часто пробуждает новые идеи в области естественных наук, и, в свою очередь, нужды науки часто подталкивают развитие математики. Работа физика-теоретика Эдварда Виттена обеспечила такой громадный прорыв в математике, что в 1990 г. он получил одну из самых высоких наград в области математики – Филдсовскую медаль. Но при этом математика не является естественной наукой. Математика сама по себе, без наблюдений за окружающим миром, не может ничего рассказать о нем. И математические теоремы не могут быть ни подтверждены, ни опровергнуты такими наблюдениями.

Ни в древнем мире, ни даже в начале Нового времени об этом не подозревали. Мы уже видели, что Платон и пифагорейцы воспринимали математические объекты, например, числа или треугольники, как элементарные составляющие природы, и мы еще увидим, как некоторые философы считали вычислительную астрономию частью математики, а не естественной наукой.

Различие между математикой и естественными науками достаточно четко. Для нас остается загадкой, как математические построения, никак не связанные с природой, часто оказываются применимы к физическим теориям. В своей знаменитой статье физик Юджин Вигнер писал о «непостижимой эффективности математики». Но в целом мы никоим образом не смешиваем математические концепции и принципы естественных наук, которые в конечном счете должны быть подтверждены наблюдением за окружающим миром.

Сейчас конфликты между математиками и другими учеными порой возникают из-за вопросов математической строгости. С начала XIX в. чистые математики требовали, чтобы строгость стала основой всего. Определения и допущения должны быть точными, а доказательства проведены с абсолютной достоверностью. Физики более гибки, точность и достоверность требуется им только для того, чтобы избежать серьезных ошибок. В предисловии к своей монографии по квантовой теории полей я признаю, что «в книге есть части, которые читатель, склонный к математике, будет читать со слезами на глазах».

Это вызывает сложности во взаимопонимании. Математики говорили мне, что работы физиков часто кажутся им раздражающе расплывчатыми. Те физики, которым, как и мне самому, нужен продвинутый математический аппарат, часто находят, что стремление математиков к строгости усложняет работу, но не так ценно для самой физики.

Физики, склонные к математике, совершили благородный поступок, формализовав современную физику элементарных частиц – квантовую теорию поля – по строгим математическим канонам, и достигли некоторых интересных результатов. Но за последние полвека в Стандартной модели элементарных частиц не было никакого развития, связанного с достижением более высокого уровня математической строгости.

Быстрый переход