Не установлено, применял ли сам Архимед свое открытие на практике, но и столетия спустя этот метод оставался надежным способом выяснения состава материалов.
Еще более потрясающих успехов Архимед добился в математике. Используя технику, предвосхитившую интегральный анализ, он смог вычислить площади и объемы различных плоских фигур и пространственных тел. Например, площадь круга равна половине длины соответствующей окружности, помноженной на радиус (см. техническое замечание 10). Используя методы геометрии, он показал, что соотношение, выражаемое числом, которое мы (но не Архимед) называем «пи», то есть отношение длины окружности к ее диаметру, находится между 3 1/7 и 3 10/17. Цицерон свидетельствует, что он видел на могильном камне Архимеда чертеж цилиндра, описанного вокруг сферы, поверхность которой касается боковой поверхности и обоих концов цилиндра, наподобие теннисного мяча, плотно всунутого в жестяную банку. По всей видимости, Архимед больше всего гордился своим доказательством того, что в этом случае объем сферы составляет ровно 2/3 объема цилиндра.
Существует рассказ о смерти Архимеда, переданный древнеримским историком Титом Ливием. Архимед погиб в 212 г. до н. э. во время разграбления Сиракуз римскими воинами под командованием Марка Клавдия Марцелла (до этих событий власть в Сиракузах была захвачена сторонниками Карфагена во время Второй Пунической войны). Когда римляне ворвались в Сиракузы, Архимеда убил солдат в тот момент, когда он работал над решением очередной геометрической задачи.
Помимо несравненного Архимеда к величайшим математикам Эллинистической эпохи относится его более поздний современник Аполлоний Пергский. Аполлоний родился в 262 г. до н. э. в Перге, городе на юго-восточном побережье Малой Азии, который в тот момент находился под властью набиравшего силу Пергамского царства. Но он путешествовал в Александрию во время правления Птолемея III и Птолемея IV, то есть в период с 247 по 203 г. до н. э. Выдающаяся работа Аполлония посвящена коническим сечениям – эллипсу, параболе и гиперболе. Это кривые, которые получаются при рассечении конуса плоскостью под различными углами. Намного позднее теория конических сечений оказалась принципиально важной для Кеплера и Ньютона, но применения в физике античного мира она не нашла.
Несмотря на эти блестящие прозрения в области геометрии, в древнегреческой науке практически отсутствовали математические методы, являющиеся неотъемлемой частью современной физики. Греки не умели писать и преобразовывать алгебраические формулы. Выражения наподобие E = mc² и F = ma – суть современной физики. (В своем чисто математическом труде Диофант Александрийский, живший и работавший в Александрии в середине III в., использовал формулы, но символы в его уравнениях обозначали только целые или рациональные числа, а в используемых сейчас физиками формулах это не так.) Даже когда нужно описать пространственные свойства явления, современный физик предпочитает выводить геометрические соотношения алгебраическим путем, используя приемы аналитической геометрии, разработанные в XVII в. Рене Декартом и другими (об этом будет рассказано в главе 13). Вероятно, из-за престижа, заработанного успехами древнегреческих математиков, геометрический стиль доказательств превалировал вплоть до научной революции XVII в. Когда Галилео Галилей в 1623 г. в своей книге «Пробирных дел мастер» воздает хвалу математике, в первую очередь он говорит о геометрии: «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. |