Для того, чтобы совершился переход определенного количества теплоты в работу, двигатель должен обеспечивать обмен теплотой между двумя телами различной температуры: источником теплоты и охладителем. Двигатель поглощает определенное количество теплоты от ее источника, но не всю ее преобразует в работу, потому что часть отдает охладителю. Таким образом, часть теплоты Q<sub>1</sub> преобразуется в работу, кроме того имеется теплота Q — Q<sub>1</sub>, которая передается охладителю.
Таким образом, если после преобразования работы в теплоту (первый закон термодинамики) я преобразую эту теплоту в работу, мне не удается вернуться к исходному количеству этой работы. Наблюдается уменьшение или, как обычно говорят, «расход» энергии, которую уже не удастся восстановить. Энергия «расходуется». Таким образом, некоторые природные процессы не являются полностью обратимыми: «эти процессы однонаправленны, и с каждым из них мир делает шаг, след которого никоим образом нельзя стереть»<sup>3</sup>. Если мы хотим найти общую меру этой необратимости, надо предположить, что природа, так сказать, отдает предпочтение одним состояниям перед другими (то есть тем, к которым устремляются необратимые процессы) и кроме того, нам придется отыскать физическую величину, которая количественно измеряет предпочтение, отдаваемое природой определенному состоянию. Такая величина имела бы свойство расти во всех необратимых процессах. Это и есть энтропия.
Таким образом, второе начало термодинамики, утверждая «расход» энергии, стало законом энтропии, причем настолько, что обычно идею энтропии связывают с идеей этого «расхода» и тем выводом, согласно которому, наблюдая за развитием любого естественного процесса в направлении увеличивающегося расхода и поступательного уменьшения энергии, можно якобы говорить о «тепловой смерти» вселенной. Однако надо раз и навсегда отметить, что если понятие энтропии и используется в термодинамике для того, чтобы определить расход энергии (и, следовательно, здесь неизбежно начинают звучать пессимистические нотки, коль скоро нам позволено облекать в чувства научные размышления), в действительности представляет собой статистическую величину и потому является математически нейтральным инструментом. Иными словами, энтропия представляет собой измерение состояния наибольшей равновероятности, к которому стремятся естественные процессы. В этом смысле и принято говорить, что природа имеет предпочтения: она предпочитает более единообразное состояние менее единообразному, и теплота переходит от более нагретого тела к менее нагретому потому, что состояние равномерного распределения температуры более вероятно, чем состояние неравномерного распределения. Иными словами, взаимонаправленная скорость молекул в большей степени тяготеет к состоянию единообразия, а не к состоянию различия, в котором, при их различной скорости, совершаются различные тепловые реакции. Исследования, проведенные Больцманом в области кинетики газов, показали, что природа прежде всего тяготеет к элементарной неупорядоченности, мерой которой является энтропия<sup>4</sup>.
Тем не менее необходимо еще раз подчеркнуть, что понятие энтропии является чисто статистическим, так же, как, в конечном счете, чисто статистическим является тот же принцип необратимости: как уже показал Больцман, в замкнутой системе обратимость не невозможна, а только невероятна. Столкновение молекул газа происходит согласно статистическим законам, которые сводят различие скоростей к среднему равенству. Когда более быстрая молекула сталкивается с более медленной, может случиться так, что последняя передаст часть своей скорости первой молекуле, но статистически более вероятно, что произойдет обратное, то есть быстрая молекула замедлит свой бег и сообразует свою скорость со скоростью более медленной молекулы, порождая состояние большего единообразия и, следовательно, способствуя росту элементарной неупорядоченности. |