Изменить размер шрифта - +
Стало достаточно «холодно» для того, чтобы протоны и нейтроны начали образовывать сложные ядра. Первым на очереди стоял тяжелый водород, или дейтерий, состоящий из одного протона и одного нейтрона. В то же время плотность «супа» оставалась довольно высокой (чуть меньше, чем у воды), поэтому легкие ядра, быстро находя друг друга, превращались в самые стабильные легкие ядра – ядра гелия, состоявшие из двух протонов и двух нейтронов.

Когда истекли первые три минуты, Вселенную заполняли в основном свет, нейтрино и антинейтрино. Правда, в небольшом количестве присутствовали еще ядра (из них около 73 % водорода и 27 % гелия) и электроны, оставшиеся после эпохи электрон-позитронной аннигиляции. Все это вещество продолжало разлетаться, постепенно охлаждаясь и становясь все менее плотным. Спустя долгие сотни тысяч лет его температура снизилась настолько, что ядра, соединившись с электронами, образовали атомы водорода и гелия. Этот газ, в свою очередь, под влиянием силы тяжести разбился на сгустки, а те собрались вместе и образовали галактики и звезды нынешней Вселенной. Однако эти звезды в начале своего жизненного пути состояли именно из тех ингредиентов, которые были приготовлены в первые три минуты.

Набросанная выше стандартная модель – далеко не самая удовлетворительная теория происхождения Вселенной, которую можно придумать. Как и «Младшая Эдда», она смущенно умалчивает о самом начале, о первой сотой доле секунды. Как бы нам ни хотелось того избежать, в ней приходится выставлять начальные условия «руками». В частности, задавать отношение числа фотонов к количеству ядер, равное миллиарду. Хотя, конечно, нам больше по душе пришлись бы основательные логические умозаключения.

Например, одна из альтернативных теорий, выглядящая более привлекательно (во всяком случае, с философской точки зрения), – это так называемая модель стационарной Вселенной. Предложенная в конце 1940-х гг. Германом Бонди, Томасом Голдом и (в несколько отличной формулировке) Фредом Хойлом, она утверждает, что Вселенная всегда была примерно такой же, как сейчас. По мере ее расширения рождается новое вещество, которое и заполняет зазоры между галактиками. А на вопрос о том, почему Вселенная такая, какая она есть, стационарная модель отвечает незамысловато: это единственный для мироздания способ оставаться одинаковым во все времена. Тогда проблема ранней Вселенной теряет смысл – нет никакой ранней Вселенной.

Как же мы пришли к «стандартной модели»? И почему она вытеснила остальные теории вроде «стационарной Вселенной»? Достигнутное научным сообществом согласие – свидетельство объективного подхода современной астрофизики: ее движителем являются не философские предпочтения или авторитетные мнения маститых астрофизиков, а лишь эмпирические данные.

В последующих двух главах будет рассказано о двух ключевых догадках, которые, будучи подкрепленными астрономическими наблюдениями, привели нас к «стандартной модели»: об открытии разбегания удаленных галактик и обнаружении слабых радиопомех, заполняющих всю Вселенную. Этот путь усеян неудачными гипотезами, упущенными возможностями и теоретическими предрассудками. А сколько копий сломано в борьбе разных взглядов – не счесть. Историки науки найдут здесь богатый материал для исследования.

В этом обзоре наблюдательной космологии я попытаюсь собрать имеющиеся данные в связную картину, повествующую о физических условиях в ранней Вселенной. Таким образом мы с вами подробнее проследим ее первые три минуты. Лучше всего для наших целей, наверное, подходит кинематографический подход: мы – кадр за кадром – увидим, как Вселенная расширялась, охлаждалась и что она сварила в собственном соку. Мы также попытаемся заглянуть в эпоху, плотно укутанную завесой тайны – в первую сотую долю секунды, – и ответить на вопрос о том, что было до нее.

Быстрый переход