Этот метод основан на хорошо известном свойстве любых волновых процессов – на так называемом эффекте Доплера. Когда мы принимаем звуковую или световую волну от неподвижного источника, интервал между прибытиями ее соседних гребней такой же, с какими они его покинули. Стоит, однако, источнику начать удаляться, как промежутки времени между приходом гребней становятся больше, чем между моментами испускания. Происходит это потому, что каждый последующий гребень преодолевает большее расстояние, чем предыдущий. Задержка между приходом соседних гребней – это всего-навсего длина волны, деленная на ее скорость. Именно поэтому удаляющийся источник испускает более длинные волны, чем покоящийся. Точнее, относительное увеличение длины волны равно, как показано в математической заметке 1 (с. 233), отношению скорости источника к скорости самой волны. Аналогично, если источник приближается, то время между приходами соседних гребней уменьшается, потому что расстояние, проходимое каждым последующим гребнем, меньше, чем у предыдущего. То есть волна становится короче. Например, представим ушедшего в плавание моряка, который каждую неделю посылает письма с корабля домой. Чем дальше он уплывает, тем дольше идет каждое такое послание, и семья получает их чуть реже, чем раз в неделю. На обратном же пути, чем ближе корабль к порту приписки, тем быстрее идут письма. Это значит, что дома их получают чуть чаще, чем раз в неделю.
В наши дни эффект Доплера в отношении звуковой волны ничего не стоит проверить экспериментально. Выйдя на обочину скоростного шоссе, вы без труда заметите, что звук мотора пролетающего мимо автомобиля выше (т. е. длина волны короче), когда машина приближается, и ниже – когда удаляется. Приоритет в обнаружении этого эффекта (как для звука, так и для света) безусловно принадлежит преподавателю математики пражского Политехнического института Иоганну Кристиану Доплеру, открывшему его в 1842 г. В 1845 г. голландский метеоролог Кристофер Генрих Дитрих Бейс-Балло подверг звуковой эффект Доплера экспериментальной проверке. В выдумке Бейс-Балло не откажешь: в качестве движущегося источника звука он взял ансамбль трубачей, которые стояли на платформе поезда, ехавшего по сельским просторам вблизи города Утрехта.
Доплер полагал, что его эффект поможет объяснить, почему звезды бывают разных цветов. Свет удаляющихся от Земли звезд сдвинулся бы в сторону больших длин волн. А поскольку у красного длина волны больше, чем средняя длина волны видимого света, то и звезды показались бы нам покрасневшими. Аналогично в сторону более коротких длин волн сдвинулся бы свет от звезд, приближающихся к Земле. Поэтому они, на наш взгляд, казались бы непривычно голубыми. Однако вскоре Бейс-Балло и другие указали, что эффект Доплера к цвету звезд не имеет никакого отношения. Да, синий цвет в излучении удаляющейся звезды действительно меняется на красный. Но в то же время не различаемый человеческим глазом ультрафиолет сдвигается в синию часть видимого спектра, так что общий цвет вряд ли сильно меняется. На самом же деле у звезд разные цвета потому, что у них разная температура поверхности.
Однако триумф эффекта Доплера в астрономии все же состоялся: в 1868 г. его применили к изучению отдельных спектральных линий. За много лет до этого, в 1814–1815 гг., оптик из Мюнхена Йозеф Фраунгофер обнаружил, что если заставить солнечный свет пройти сначала через узкую щель, а потом через стеклянную призму, то получается цветной спектр, усеянный сотнями темных линий, каждая из которых представляет собой изображение щели. Некоторые из этих линий Вильям Гайд Волластон наблюдал еще раньше, в 1802 г., но большого внимания тогда на них не обратил. Эти линии всегда приходились на одни и те же цвета, имеющие строго определенные длины волн. Те же самые линии на тех же самых местах Фраунгофер увидел и в спектрах Луны и ярких звезд. А вскоре стало ясно, что они возникают тогда, когда свет от нагретой поверхности звезды проходит через ее более холодную атмосферу, которая его выборочно поглощает на определенных длинах волн. |