Изменить размер шрифта - +

Правило эквивалентности Чаргаффа состоит в том, что в молекулах ДНК количество аденина всегда равно количеству тимина, а количество гуанина равно количеству цитозина.

Глубокий смысл этого правила (его называют также правилом спаривания оснований) прояснился, когда Уотсон и Крик установили комплементарную структуру ДНК. Другими словами, в двухцепочечной спирали ДНК напротив молекулы аденина одной цепи всегда находится молекула тимина, а напротив гуанина — цитозин.

Уотсон и Крик сразу поняли значение этого факта для воспроизведения клеточной информации. Свою первую статью в журнале «Nature» (а эта публикация, кстати говоря, принесла им Нобелевскую премию) ученые закончили знаменательной фразой: «От нашего внимания не ускользнул тот факт, что специфическое спаривание… позволяет предполагать возможный копирующий механизм для генетического материала». Г. Стент говорит, что это самое скромное утверждение в истории науки.

Теперь вернемся к процессу репликации. В клетке всегда есть запас свободных нуклеотидов. И когда начинается разделение полинуклеотидных цепочек двойной спирали, каждое основание притягивает комплементарное ему: в соответствии с правилом спаривания оснований напротив аденина появляется тимин, а напротив цитозина — гуанин. Таким образом, напротив каждой из двух исходных родительских цепочек образуется комплементарная дочерняя. Из одной молекулы ДНК получаются две, полностью идентичные материнской молекуле.

В каждой дочерней молекуле ДНК одна из цепочек двойной спирали — родительская, а другая — синтезированная. Поэтому, когда начнут делиться дочерние клетки, то у части «внучатых» молекул ДНК уже не останется родительских атомов в полинуклеотидных цепях. Тем не менее природа выполнила свою цель: «родительская» информация записана в каждой молекуле ДНК, и процесс комплементарной репликации полностью обеспечивает передачу информации от родителей к потомкам.

После открытия знаменитой структуры двойной спирали немало времени ушло на поиски экспериментальных методов, которые смогли бы подтвердить правильность описанного выше механизма репликации ДНК — Это был очень важный и необходимый этап научного поиска, поскольку решение вопроса о структуре ДНК не являлось еще полной гарантией непогрешимости Уотсона и Крика в проблеме репликации генетического материала.

В то время многие солидные биологи думали, что ДНК вообще прямо не реплицируется, а существует некая таинственная молекула-посредник, которая «запоминает» информацию родительской ДНК, а затем уж с нее, как с матрицы, снимаются копии дочерних молекул ДНК. Этот способ передачи информации они назвали консервативным. Способ передачи информации, предложенный Уотсоном и Криком, получил название полуконсервативного.

Полуконсервативный механизм репликации был полностью подтвержден в классических опытах М. Меселсона и Ф. Сталя. Особенность опыта состояла в том, что исходная молекула ДНК, за репликацией которой следили ученые, содержала не обычные атомы азота, а тяжелые, с атомным весом 15. Для этого культура бактерий выращивалась на питательной среде, включающей в себя лишь меченый азот 15N. Деление же этих «тяжелых» клеток происходило в среде, содержащей обычный азот. Меселсон и Сталь исследовали ДНК различных поколений при помощи специального метода, позволяющего в отдельности видеть «тяжелую» и нормальную ДНК.

Вот этот опыт и позволил получить изящное прямое доказательство справедливости полуконсервативного механизма репликации молекулы ДНК, предложенного Уотсоном и Криком. Меселсон и Сталь убедительно продемонстрировали, что после удвоения числа бактерий вся их ДНК оказалась гибридной, то есть промежуточной по весу между «тяжелой» и нормальной. С каждым новым поколением наблюдалось уменьшение количества тяжелой ДНК и увеличение числа нормальных «легких» молекул.

Быстрый переход