Изменить размер шрифта - +
А тут еще рибосомы. Да добро бы только рибосомы. Есть задача и посложнее.

В двадцатых годах нашего столетия профессор У. Астбюри начал изучать рентгенограммы человеческого волоса, Оказалось, что молекулы белка в человеческом волосе расположены строго упорядочение и независимо от того, у кого взят волос, у блондина или брюнета, дают одинаковую и строго определенную картину в потоке рентгеновских лучей.

Астбюри провел эксперимент, который, по его собственному признанию, был одним из самых волнующих в его жизни. Будучи страстным любителем музыки, он сумел раздобыть на время прядь волос Моцарта и снял их рентгенограмму. Расположение белковых молекул в волосах великого композитора ничем не отличалось от их расположений в волосах обычных людей.

Но здесь речь идет только об упорядоченности молекул, причем у организмов одного вида. А что можно сказать о химическом составе сходных белков, например известного всем гемоглобина, у различных биологических видов?

За многие миллионы лет эволюции живого мира в составе идентичных белков произошли определенные изменения. Гемоглобин лошади, выполняя те же функции, что и гемоглобин человека, несколько отличается от него по своей аминокислотной последовательности. Означает ли это, что у лошади механизм образования гемоглобина, да и любого другого белка иной, чем у человека?

Вопрос можно поставить глубже.

Каким образом происходит снятие копии живого организма? И как клетка делает белки, необходимые ей для нормальной жизни?

Мы видели, что первый $тап этого процесса — редупликация генетического материала клетки, молекул ДНК — Но, спрашивается, зачем это нужно клетке? Зачем ей передавать потомству точную копию своей нуклеиновой кислоты?

Процесс редупликаций генетического материала нельзя отделять от процесса образования дочерней клетки как целого.

Чтобы получилось полноценное потомство, недостаточно просто снять копию с ДНК. Нужно, чтобы дочерняя клетка имела такой же полный запас белков, мембрану, все необходимые клеточные органеллы, как и ее родитель.

В одной клетке кишечной палочки три тысячи типов различных белков. Именно в молекулах ДНК зашифрована вся информация, как их нужно делать. Поэтому-то великое таинство жизни — рождение потомства — и начинается с редупликации ДНК. и передачи копии генофонда «по эстафете», от родителей к детям.

Но генофонд сам по себе, в изоляции, ничего не может сделать. Находясь же в крохотном кусочке живой материи — клетке, он творит чудеса, вернее, клетка, используя генофонд, творит чудо, строя свою полную копию. Клетка «знает», как это делать.

В 1973 году в офисе известного в США журналиста, специализировавшегося на научно-популярных статьях, Д. Рорвика раздался телефонный звонок. Миллионер, имя которого Рорвик обещал держать в тайне, обратился к нему с просьбой, которая вполне могла бы послужить сюжетом научно-фантастического романа. Однако миллионер был полностью в курсе достижений современной молекулярной генетики; и, хотя его разговор с Рорвиком действительно слегка отдает фантастикой, беседа эта явилась еще одним подтверждением колоссальных успехов современной науки.

Миллионер попросил журналиста подыскать ученых, которые бы согласились сделать… его (миллионера) живую копию. Такие ученые нашлись.

За пределами США была создана секретная лаборатория, где в течение двух лет готовились к решающему опыту. Извлеченную из тела миллионера клетку слили в пробирке с яйцеклеткой, ядро которой предварительно разрушили, чтобы остались в «живых» только генетические признаки миллионера. «Оплодотворенную» яйцеклетку имплантировали (ввели) приемной матери, у которой через 9 месяцев родился нормальный ребенок — сын и в то же время брат-близнец миллионера, его абсолютно точная копия.

Эту поразительную историю поведал миру один из научно-популярных журналов.

Быстрый переход