Изменить размер шрифта - +
Этот последний этап процесса синтеза белка называется трансляцией.

Центральный постулат утверждает, таким образом, что поток информации во всех живых организмах идет только в одном направлении — от ДНК через РНК к белку. Другими словами, ДНК «знает» о белке все. Белок «не знает» о ДНК и не может повлиять на последовательность нуклеотидов в ДНК. Более того, если бы нашелся организм, функционирующий по принципу белок — ДНК, это заставило бы нас пересмотреть основные положения молекулярной генетики и биологии.

Казалось бы, все просто: есть матрица, а на ней строится белок. Но простоты здесь нет никакой.

Разберем более подробно, каким же образом происходит синтез белковых молекул.

Так же как и при описаний репликация ДНК, мы постараемся подчеркнуть нерешенные вопросы в процессах матричного синтеза, чтобы сделать более контрастной стержневую идею о глубине разрыва между макромолекулами и функционирующей клеткой.

Сегодня на основании большого числа опытных данных можно считать твердо установленным, что план построения клеточных белков записан в молекуле ДНК.

К такому выводу ученые пришли, конечно, не сразу, хотя проблема передачи наследственной информации возникла еще во времена Ф. Мишера и Г. Менделя.

На рубеже XIX и XX веков лишь отдельные естествоиспытатели понимали всю принципиальную важность и сложность проблемы воспроизведения копии живого организма и передачи наследственной информации.

Работы русского химика профессора А. Колли, выполненные почти столетие назад, показали, что наследственное вещество в бактериальной клетке составляет очень малую часть от общего числа молекул в ней.

И данные Колли натолкнули академика Н. Кольцова на идею о матричном синтезе белков. Однако Кольцов представлял себе поток информации в виде схемы белок — белок. Он думал, что «каждая белковая молекула возникает из белковой молекулы путем кристаллизации вокруг нее находящихся в растворе аминокислот и других белковых обломков».

Весь процесс построения белка, как мы сейчас знаем, происходит не так и гораздо сложнее, но идея матричного синтеза, впервые высказанная Кольцовым в двадцатых годах нашего века, оказала неоценимое влияние на все последующее развитие молекулярной биологии.

 

Если отвлечься на время от химических аспектов взаимодействия аминокислот с РНК, то проблему генетического кода можно рассматривать просто как проблему перевода текста с одного алфавита на другой.

Молекулу белка можно представить себе как фразу с определенным смыслом. Ну, например, «Яумеюпомогатьорганизмувперевариваниипищи». Не очень длинная фраза, не очень сложный белок — всего 40 аминокислотных остатков. Каждая буква в этой фразе — аминокислота. Но только в отличие от русского алфавита в аминокислотном языке всего двадцать букв. Стоит переставить местами несколько букв во фразе, и она потеряет смысл.

Стоит переставить аминокислоты, и молекула белка тоже «потеряет смысл» — не сможет выполнять свою функцию: помогать в переваривании пищи.

Молекула ДНК тоже текст. Но текст, в алфавите которого используется лишь четыре буквы. В мире живого белковый текст кодируется нуклеиновым. А что такое кодирование?

Если заданная последовательность нуклеотидов в нуклеиновой кислоте полностью определяет последовательность аминокислот в белке, то мы говорим, что нуклеиновый текст кодирует текст белка.

Как же составляются слова из четырех букв нуклеинового текста? Совершенно ясно, что кодировать одну букву — аминокислоту должны какие-то комбинации из четырех букв — нуклеотидов. Это очевидно, так как четыре нуклеиновых основания, взятые каждое в отдельности, могут определить положение только четырех аминокислот в белковой молекуле. Ну а если брать пары оснований? Нетрудно видеть, что тогда можно кодировать 42, или 16 аминокислот.

Быстрый переход