Следовательно, прежде всего надо изгнать из схемы все соединительные провода — они только мешают, а из контура и лампы составить одно целое, один прибор.
Наиболее удобным для этой цели оказался контур, изготовленный наподобие покрышки автомобильного колеса, то есть в виде пустотелого кольца с разрезом вдоль его внутренней окружности.
Контур подобной формы получил название полого или объемного резонатора. Для присоединения такого резонатора к лампе никаких соединительных проводов не требуется: его, как бублик, надевают прямо на баллон лампы.
Но и этого усовершенствования оказалось недостаточно. Обнаружилось новое, еще более серьезное препятствие, которое зависит от свойств самого электрона.
При длине волны в 1 метр частота колебаний на сетке лампы составит почти 300 миллионов в секунду. Если же укоротить длину волны до 10 сантиметров, а именно этого и добивались ученые, то частота достигнет 3 миллиардов колебаний в секунду!
Как ни велика скорость электрона в электронной лампе, все же он летит недостаточно быстро. Он не успевает пролететь расстояние от сетки до анода, как напряжение на сетке уже изменяется; анодный ток перестает следовать за командами сетки.
Регулировщик уличного движения на перекрестке должен включать зеленый или красный фонарь светофора, обязательно сообразуясь со скоростью транспорта. Нельзя менять сигнал раньше, чем трамваи и автомашины пересекут перекресток. Если же регулировщик начнет спешить, то шоферы, не успевая следовать командам светофора, просто перестанут его слушаться, и на перекрестке произойдет беспорядок.
Сетка в лампе служит регулировщиком «уличного» движения электронов. И в лампе тоже возникнет беспорядок, если на сетку подать слишком высокую частоту. Электроны начнут прибывать на анод не вовремя, опаздывать. Вся работа контура нарушится.
Электронной суматохи в лампе казалось бы можно избежать. Для этого надо уменьшить расстояние между катодом и анодом, — сблизить их, это сократит время полета электронов в баллоне лампы.
Конструкторы взялись за переделку ламп. Появились лампы размером с пальчик — «пальчиковые» пентоды и размером с желудь — лампы «желуди».
Но, увы, «хвост вытащишь — нос увязнет». В «желудях» электронной «толчеи» не получается, но зато между чересчур сближенными электродами увеличилась емкостная связь. Опять плохо!
При большой внутренней емкости через лампу начинает проходить переменный ток. Лампа перестает выполнять одно из своих назначений — служить выпрямителем тока.
Все это привело к мысли, что надо не только объединить контур с лампой в одном приборе, но создать совершенно новый тип лампы, предназначенный специально для очень коротких волн.
Такие лампы были созданы советскими учеными. В 1932 году Д. А. Рожанский разработал проект лампы, получившей название клистрона.
Постройку клистрона осуществили в 1935 году А. Арсеньева и О. Хейль. Слово клистрон в переводе с греческого означает «морской прибой», и то, что происходит за стеклянными стенками клистрона, действительно напоминает морской прибой, когда волны равномерной чередой накатываются на берег.
Клистрон представляет собой стеклянную трубку, на которой надеты два «бублика», то есть два объемных резонатора, исполняющие обязанности колебательных контуров.
Как видно на рисунке 88 в объемном резонаторе клистрона роль емкости — конденсатора — исполняют сетки, а катушка индуктивности заменена металлической трубкой, согнутой в кольцо и разрезанной внутри. Стрелки показывают, как по ней движутся электроны, когда в резонаторе происходят электрические колебания.
Рис. 88. Объемный резонатор клистрона в форме бублика, сделанного из металлической трубки с разрезом по внутреннему диаметру. |