Итак, сетки первого резонатора рубят электронный поток на отдельные стаи и уплотняют их, сбивая электроны в «пакеты».
Подлетая к сеткам второго резонатора, который называется улавливателем, эти электронные сгустки-пакеты обрушиваются на них подобно волнам морского прибоя.
Сгустки один за другим проходят сквозь сетки улавливателя и в силу индукции отдают им свою энергию, возбуждая во втором резонаторе колебания той же частоты, что и в первом, но более мощные. Потеряв в улавливателе значительную часть своей энергии, «отработавшие» электроны налетают на коллектор, который выводит их из лампы.
Но невольно возникает вопрос: откуда же берется высокая частота, которой питают первый «бублик»? На это легко ответить — от улавливателя. Внутрь полостей обоих резонаторов введены концы проводника, соединяющего резонаторы между собой (рис. 89).
Это устанавливается между обоими резонаторами связь, благодаря которой клистрон самовозбуждается, как и обычная генераторная лампа с обратной связью в колебательном контуре.
В последние годы чаще всего применяют клистроны, работающие на волнах от 9 до 11 и от 3 до 3,3 см. Но уже изготовляются клистроны и для волн в 7–8 миллиметров.
В вихре магнитного поля
Еще раньше клистрона появился другой прибор, тоже предназначенный для создания очень коротких радиоволн и названный магнетроном.
Магнетроны отличаются от всех остальных радиоламп тем, что управление электронным потоком производится в них не электрическим полем сетки, а магнитным. Если электрическое поле сравнимо с обычным ветром, то магнитное поле — это вихрь или смерч.
Электрон, пересекая магнитное поле, движется по дуге окружности, и чем сильнее поле, тем круче изогнется траектория полета электрона. Электрон в магнитном поле вьется, как песчинка, подхваченная вихрем (рис. 90).
Рис. 90. Движение электрона, попавшего в магнитное поле.
Эту особенность магнитного поля использовали для создания магнетронов. Первый в мире мощный магнетрон построили в 1939 году советские инженеры Д. Е. Моляров и Η. Ф. Алексеев.
В магнетроне только два электрода — анод и катод; сеток нет. Анод изготовлен в виде полого, металлического цилиндра с толстыми стенками. Катод имеет форму палочки или стержня и помещается внутри полости анода в самом ее центре, то есть он расположен по оси анода. В стенках анода, параллельно его оси, высверлены каналы, соединенные боковой стороной с внутренней полостью магнетрона; это объемные резонаторы (рис. 91).
Рис. 91. Основные части разрезного магнетрона. Электроны крутятся вихрем вокруг катода. Электрические колебания возникают внутри каждого цилиндрического канала, разрез которого служит конденсатором.
Оба электрода находятся в сильном магнитном поле, направленном так, что его силовые линии пронизывают пространство между анодом и катодом вдоль их оси.
На катод, как и в обычной лампе, подают отрицательное напряжение, на анод — положительное.
Катод подогревают электрическим током. Он испускает электроны. Увлекаемые электрическим полем, электроны мчатся от катода к аноду. Если б не было магнитного поля, они полетели бы по прямым линиям, то есть по радиусам, и без помех «приземлились» бы на аноде.
Но магнитное поле диктует им свои законы. Пересекая магнитные силовые линии, электроны сворачивают с прямого пути и несутся по кругу, как щепки, попавшие в водоворот.
Напряжение на электродах и сила магнитного поля подобраны с таким расчетом, чтобы электроны поворачивали обратно к катоду как раз возле самой поверхности анода. Они скользят вдоль анода и летят назад. Ток через магнетрон почти не идет.
Электроны же, вылетая из раскаленного катода, накапливаются в «вихре» магнитного поля: в пространстве между катодом и анодом сосредоточивается мощный электрический заряд. |