Изменить размер шрифта - +
Все гипероны являются фермионами.

Как и мюоны, которые могут замещать электроны внутри атома и образовывать мезоатомы, лямбда-гипероны могут замещать частицу внутри атомного ядра и образовывать короткоживущее гиперъядро.

В 1960-х годах было обнаружено несколько крайне короткоживущих частиц, период полураспада которых равнялся всего 10<sup>–23</sup>. Это — резонансные частицы. Пока неясно, являются ли они отдельными частицами. Возможно, это всего лишь кратковременные соединения двух и более частиц.

Огромное количество обнаруженных частиц привело физиков в замешательство, так как было очень сложно расположить их по порядку. Требовались новые законы поведения частиц.

Например, несмотря на то, что условия образования гиперонов свидетельствуют о том, что они являются частицами сильного взаимодействия, и несмотря на то, что продукты их распада также являются частицами сильного взаимодействия, тем не менее распад гиперона идет нехарактерно медленно. Распад, например, лямбда-гиперона можно представить в виде:

 

где λ (греческая заглавная «лямбда») обозначает лямбда-гиперон. В ходе этой реакции соблюдаются все известные законы сохранения. Сохраняется, например, спин, так как спин пиона равен 0. Сохраняется и барионное число, а гипероны являются барионами. (В данном случае пион не является членом ни одного из участвующих в реакции семейств частиц, числа которых сохраняются, поэтому он может совершенно свободно появляться и исчезать, не нарушая законов сохранения.) Так как по всем признакам описанное формулой 14.18 взаимодействие является сильным, оно должно происходить не более чем за 10<sup>–28</sup> с (или около того). Однако взаимодействие длится в течение 2,5∙10<sup>–10</sup> с, что в 10 трлн. раз дольше, чем должно быть, — невероятно долго по субатомным меркам.

Объяснение этому в 1953 году предложили независимо друг от друга два физика — американец Марри Гелл-Ман и японец Кацухико Нисидзима. Они предложили новую сохраняющуюся величину, которую Гелл-Ман назвал странность.

Странность всех членов электронной и мюонной семей, а также пионов, нуклонов и их античастиц равна 0. Все остальные частицы, странность которых не равна 0, имеют общее название «странные частицы». Странность каона равна +1; лямбда-гиперона и сигма-гиперона –1; а кси-гиперона –2. Их античастицы имеют конечно же противоположное значение числа странности.

Значения странности не были присвоены частицам произвольно, они вычислялись экспериментальным путем. Если странность исходной частицы равна нулю, то при ее распаде до частицы со странностью +1 обязательно должна образовываться и частица с числом странности –1. В этом случае странность сохраняется.

В описанном формулой 14.18 случае распада лямбда-гиперона (число странности -I) до протона (0) и пиона (0) странность не сохраняется, значит, такая реакция идти не может.

Однако закон сохранения странности распространяется только на сильные взаимодействия. Значит, распад лямбда-гиперона может иметь место, но только в результате слабого взаимодействия, для которого требуется гораздо больше времени. Поэтому, несмотря на все внешние признаки, формула 14.18 описывает все же слабое взаимодействие, что и объясняет долгий период полураспада лямбда-частицы.

Были обнаружены ограничения и у более старого закона сохранения четности.

Четность является величиной, которая сохраняется точно так же, как в мире цифр сохраняется четность/нечетность. Если четное число, например 8, представить в виде суммы двух меньших чисел, например 6 + 2 или 5 + 3, то оба этих числа будут либо четными, либо нечетными. Если в виде суммы двух меньших чисел представить нечетное число, например 7, то одно из них всегда будет четным, а второе — нечетным. Это же правило относится и к более сложным преобразованиям.

Быстрый переход