В 1956 году было обнаружено, что некоторые каоны распадаются на два пиона, а некоторые — на три. Так как пионам присвоена отрицательная четность, то два пиона являются четными, а три пиона — нечетными. Это означало, что существуют каоны с положительной четностью и каоны с отрицательной четностью.
Однако каоны отличались лишь способом распада, в то время как вес остальные их свойства были абсолютно идентичны. Изучая эту проблему, два китайских физика Ли Цзундао и Ян Чжэньнин с теоретической точки зрения объяснили, почему четность должна сохраняться лишь при сильных взаимодействиях, а при слабых ею можно пренебречь.
Существовала возможность проверить это. Уже в 1927 году Эуген Вигнер, изучив проблему, доказал, что сохранение четности означало отсутствие различий между левым и правым, или (что тоже самое) между ситуацией и ее зеркальным отражением. Этого можно достичь только в том случае, если все взаимодействия будут происходить симметрично в пространстве. Например, если ядро испускает электроны, оно должно испускать их во все стороны, чтобы зеркальное отражение было неотличимо от реальности. Если же электроны испускают преимущественно в одну сторону (скажем, влево), то при зеркальном отражении они будут испускаться преимущественно вправо, и реальность можно будет отличить от ее зеркального отражения.
Китайский физик By Цзяньсюн проверила теорию Ли Яна, используя для этого кобальт–60. Кобальт–60 во время слабого взаимодействия отдает электроны. By Цзяньсюн охладила кобальт–60 практически до абсолютного нуля, после чего подвергла его действию магнитного поля. В результате этого все ядра кобальта повернулись северными магнитными полюсами в одну сторону, а южными в другую. При температуре около абсолютного нуля ядрам не хватало энергии для того, чтобы противостоять выравниванию.
Оказалось, что электроны вовсе не испускаются во всех направлениях. Из южного магнитного полюса вылетало гораздо больше электронов, чем из северного. Эту ситуацию можно отличить от ее зеркального отражения, значит, закон сохранения четности применительно к слабым взаимодействиям не работает.
Соответственно в случае слабого взаимодействии каон вполне может иметь то положительную, то отрицательную четность.
Более общий закон сохранения совмещает четность и зарядовое сопряжение — величину, определяющую взаимообмен частиц и античастиц. Это значит, что изменение четности ведет к соответствующим изменениям в связи с античастицами. Так, антивещество кобальта–60 будет испускать позитроны, причем преимущественно с северного магнитного полюса. При сильном взаимодействии четность и зарядовое сопряжение сохраняются раздельно, а при слабом — вместе.
Гелл-Ман развил свою теорию, и в 1961 году он (и независимо от него израильский физик Юваль Нееман) организовал десятки частиц сильного взаимодействия по восьми сохраняющимся при сильном взаимодействии свойствам. Обосновав свою теорию с точки зрения теории групп (раздел высщей математики), назвал ее восьмеричный путь.
Например, работая с дельта-гиперонами (еще одна группа частиц с зарядами –1, 0, +1 и +2), Гелл-Ман поместил их под более тяжелыми сигма-гиперонами (заряды –1, 0 и +1), а над сигма-гиперонами — более тяжелые кси-гипероны (заряды –1 и 0).
По аналогии на вершину образующегося треугольника можно поместить еще более тяжелую частицу с зарядом –1. Гелл-Ман назвал эту частицу отрицательным омега-гипероном, так как омега является последней буквой греческого алфавита. Омега-гиперон обладает уникальными значениями различных сохраняемых величин, самым необычным из которых является значение странности (–3).
В 1964 году омега-гиперон был обнаружен, причем все его свойства, в том числе и странности, в точности совпадали с предсказанными. По своей значимости это открытие не уступает обнаружению элементов, существование которых было предсказано Менделеевым. |