Изменить размер шрифта - +
К примеру, всем известно, что о путешествиях со сверхсветовой скоростью пока говорить не приходится. Однако, если мы запретим нашим героям такие путешествия, очень много интересных историй написано нами не будет.

Поэтому мы считаем, не совершили страшного греха. В нашей книге есть три подобных момента:

1.1. В начале XXI века не существует сверхскоростных космических кораблей, о которых говорит Йорис Форхюльст, и они не летают к облаку Оорта. Хотелось бы нам, чтобы они существовали, но увы.

2.2. Нет доказательства последней теоремы Ферма на пяти страничках, подобного тому, какое удалось в романе сделать Ранджиту Субраманьяну, и один из нас полагает, что доказательство никогда не будет найдено, потому что эта задача формально нерешаема.

3.3. Шри-Ланка никогда не будет выбрана для постройки наземного терминала космического лифта, потому что находится не строго на экваторе. В предыдущем произведении один из нас справился с этой проблемой, передвинув остров к югу. Вместо того чтобы повторяться в выборе решения, в данном случае мы выбрали другое. Экватор, в конце концов, всего-навсего воображаемая линия. Вот мы и позволили себе вообразить, что эта линия пролегает на несколько сотен километров севернее.

И наконец, нам бы хотелось выразить признательность доктору Уилкинсону за ценные разъяснения, представленные на математическом форуме Университета имени Дрексель. Эти разъяснения касаются того, чего именно добился Эндрю Уайлс своим стопятидесятистраничным доказательством. Также мы благодарим нашего друга Роберта Сильверберга за неоценимую помощь, на которую его сподвигло не только чувство долга, и через него хотим передать признательность «главному оратору» британского Оксфордского университета.

 

Третье послесловие

 

Последняя теорема Ферма.

 

Нам кажется, что было бы полезно чуть подробнее рассказать о последней теореме Ферма, но выше мы не нашли места, где бы этот фрагмент не разорвал почти фатальным образом нить повествования. Поэтому мы помещаем объяснение в самом конце… и если вы относитесь к большей части человечества, которая практически ничего не знает о теореме, надеемся, вы придете к выводу: книгу стоило дочитать до конца.

История самой знаменитой проблемы в математике начинается с краткой записи, оставленной как бы походя французским юристом из Тулузы, жившим в семнадцатом веке. Звали этого юриста Пьер де Ферма. Служба в юридической конторе отнимала у него не все время, и он любительски занимался математикой. Но следует отдать должное этому человеку: он имеет полное право называться одним из величайших математиков всех времен.

Эта знаменитая математическая проблема называется последней теоремой Ферма.

Одно из самых привлекательных свойств теоремы состоит в том, что ее совсем несложно понять. На самом деле человеку, сталкивающемуся с ней впервые, трудно поверить, что уже более трех столетий математики всего мира безуспешно бьются над задачкой настолько элементарной, что кажется, ее можно решить на пальцах.

Вообще-то проблема уходит корнями в далекое прошлое. Еще в пятом веке до нашей эры сам Пифагор выразил словами единственную математическую теорему, которая с тех пор превратилась в клише: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Те из нас, кто освоил математику на уровне средней школы, могут отчетливо представить себе прямоугольный треугольник и записать теорему Пифагора так:

a2 + Ь2 = c2.

Другие математики начали изучать вопросы, связанные с теоремой Пифагора, как только он эту теорему сформулировал (математики всегда так поступают). Выяснилось, что существует много прямоугольных треугольников, длина которых измеряется целыми числами и которые удовлетворяют вышеуказанному уравнению. Например, в треугольнике со сторонами, равными пяти и двенадцати единицам, гипотенуза будет равна тринадцати единицам… и конечно, 52 плюс 122 и в самом деле равняется 132.

Быстрый переход