Нужно только подобрать соответствующее освещение. У одних тел электроны вылетают из атомов под влиянием обычного белого света, для других необходимы ультрафиолетовые лучи и т. д.
Оказалось, что можно удалять электроны из металлов и другим, ещё более простым способом — нагреванием. Достаточно, например, взять тонкую проволочку из вольфрама (из этого металла делают волоски электрических лампочек) и раскалить её докрасна, и из проволочки, как из сита, «посыплются» электроны. Если около такой нити поместить положительно заряженное тело, то электроны, вылетающие из нагретой проволочки, устремятся к нему. В то же время можно убедиться, что при вылете электронов из раскалённой нити последняя приобретает положительный электрический заряд.
Были получены электроны из атомов и другими путями. И во всех случаях электроны, как бы они ни были получены, были тождественны друг другу. Они притягивались положительно заряженными телами, отклонялись при своём движении под действием магнита, имели один и тот же заряд и одну и ту же массу. Масса электрона, определённая очень тонким и сложным способом, была во всех случаях равна 1/1840 доле массы самого лёгкого атома — атома водорода.
Таким образом, было твёрдо установлено, что в атомах всех химических элементов, а значит, и во всех телах Вселенной имеются электрически заряженные частички — электроны. Но мы знаем, что в обычном состоянии атом не имеет электрического заряда, как говорят, он нейтрален. Значит, ясно, что в нём, наряду с отрицательными частичками, должны находиться и положительные заряды.
Что же представляют собой эти положительные заряды атома? Как они располагаются в атоме вместе с электронами? Вообще, как устроен атом, эта, как долго думали, простейшая неделимая частичка материи?
2. Когда «умирают» атомы
Кто не знает в наше время рентгеновских лучей. Эти лучи обладают способностью проникать через тела и предметы, непрозрачные для лучей видимого света. При помощи рентгеновских лучей можно «просвечивать», видеть внутреннее строение человеческого тела, куска дерева, металлического предмета. Под действием этих лучей светятся в темноте некоторые химические вещества. Действуют эти невидимые лучи и на фотографические пластинки. Если фотопластинку, завёрнутую в плотную бумагу, подвергнуть воздействию рентгеновских лучей, она будет испорчена: лучи пронижут бумагу и разрушат светочувствительный слой пластинки.
Открытие рентгеновских лучей помогло сделать в конце прошлого века новое, очень интересное открытие.
Французский учёный Беккерель изучал свечение различных тел. Особенно интересовался он веществами, которые приобретали способность светиться после освещения их солнечными лучами. Желая узнать, не испускают ли эти вещества невидимых лучей, проходящих через непрозрачные тела, он каждый день брал какое-либо светящееся вещество, клал его на завёрнутую в плотную чёрную бумагу фотографическую пластинку и выставлял всё это на некоторое время на свет. Позднее в тёмной комнате он вскрывал пакет с фотопластинкой, проявлял её и смотрел, каков был результат действия лучей, исходящих из излучаемого вещества.
Много опытов уже сделал учёный. Самые различные вещества, побывавшие на солнечном свету вместе с фотопластинкой, не действовали на неё. Но вот однажды — это было в 1896 году — учёный ставил свой очередной опыт. Только он собрался выставить кусок нового светящегося вещества и завёрнутую в бумагу пластинку на солнечный свет, как набежали облака, и солнце скрылось. Учёный решил подождать, когда выглянет солнце, а пока убрал закрытую фотопластинку и кусок изучаемого вещества в тёмный шкаф. Занявшись другими делами, Беккерель вспомнил о пластинке только спустя несколько дней. Достав из шкафа пластинку, учёный решил проявить её, не выставляя на солнце — ведь на пластинке, хотя и в темноте, лежал несколько дней кусок испытуемого вещества. |