Изменить размер шрифта - +
А это сказывается на свойствах лития. Электрон этого элемента, расположенный во втором слое, удерживается в атоме много слабее, нежели другие. Поэтому достаточно какого-либо химического воздействия на атом лития, чтобы он уже потерял свой третий электрон. Поэтому-то он и вступает так легко в различные химические соединения. Поэтому-то он и имеет ярко выраженные свойства металла. Ведь во всех металлах, как теперь установлено, имеется много «свободных» электронов, перемещающихся в любом куске металла среди его атомов.

«Родственником» лития является металл натрий. И у этого элемента, имеющего 11 электронов, такая же картина строения — он имеет два полных электронных слоя (10 электронов) и один, последний, электрон, расположенный в третьем слое. Положение последнего электрона здесь еще более неустойчиво, чем у третьего электрона лития. Ведь он располагается еще дальше от атомного ядра. Значит, он еще легче может быть оторван от своего атома. Вот почему натрий еще более активен при химических реакциях, чем литий.

Бериллий имеет уже два электрона (из своих четырёх) во втором слое, и эти электроны также держатся в нём не так прочно, как в атомах гелия и неона. Однако отнять их от атома уже труднее, чем у лития и натрия; этим и объясняется, почему бериллий менее химически активен, чем, скажем, натрий.

Так вместе с выяснением порядка расположения электронов в атомах был разгадан секрет физико-химических свойств различных элементов.

То, что электроны располагаются в атомах именно таким образом, как было сейчас рассказано, блестяще подтвердилось одним замечательным предсказанием.

В 1923 году был открыт один из последних остававшихся неоткрытыми элементов менделеевской таблицы — гафний (порядковый номер 72). Долгое время этот элемент искали в рудах его «родственника» — лантана. Поиски были тщетны. Но вот в 1922 году, рассчитав, как должны быть расположены в атомах этого неизвестного элемента электроны, учёные пришли к выводу, что он по расположению электронов более родственен цирконию, чем лантану. Значит, его нужно искать не в лантановых рудах, а в природных минералах, содержащих цирконий. И уже через год предсказанный элемент был найден в норвежской цирконовой руде!

После того как было выяснено расположение электронов в различных атомах, удалось установить, каким путём атомы соединяются в молекулы.

Вот как это происходит. Когда атомы соединяются в молекулы, то при этом в них изменяется движение некоторых электронов — как раз тех, которые наиболее удалены от ядра. Так, например, когда соединяются два атома кислорода и атом углерода в молекулу углекислого газа, то часть электронов углерода и кислорода перестаёт уже принадлежать одному атому — они охватывают теперь все ядра. Так образуется молекула (рис. 17).

 

Рис. 17. Схема образования молекулы углекислого газа.

 

А вот другой способ соединения атомов: атом натрия (11 электронов) имеет один «лишний» электрон (рис. 18).

 

Рис. 18. Схема образования молекулы поваренной соли.

 

Этот электрон только начинает «надстраивать» третью оболочку атома, и поэтому натрий без особого труда отдаёт его другим атомам. Наоборот, атом хлора (17 электронов) имеет в своей третьей оболочке семь электронов; эта оболочка уже достаточно прочная И вместо того, чтобы отдавать электроны из неё, атом хлора захватывает чужой электрон, необходимый для «достройки» своей оболочки. Поэтому как только атом натрия приближается к атому хлора, «лишний» электрон натрия переходит в электронную оболочку хлора. Атомы натрия и хлора становятся электрически заряженными — атом натрия становится положительно заряженным ионом, а атом хлора — отрицательно заряженным. Это сделал электрон-«перебежчик».

Быстрый переход