Следовательно, всего мы знаем сорок восемь совершенных чисел, потому что знаем только сорок восемь чисел Мерсенна.
Третье число на экране стадиона – 8208 – тоже особенное, поскольку оно относится к категории так называемых самовлюбленных чисел. Оно равно сумме своих цифр, возведенных в степень, равную количеству этих цифр:
8208 = 8<sup>4 </sup>+ 2<sup>4 </sup>+ 0<sup>4 </sup>+ 8<sup>4 </sup>= 4096 + 16 + 0 + 4096
Причина, почему это число называют самовлюбленным, заключается в том, что его же собственные цифры используются для генерации самого числа. Создается впечатление, что такое число одержимо собой, почти влюблено в само себя.
Есть масса других примеров самовлюбленных чисел, например 153, которое равно 1³ + 5³ + 3³, однако доказано, что существует их конечное количество. В действительности есть всего восемьдесят восемь самовлюбленных чисел, среди которых самое большое – 115 132 219 018 763 992 565 095 597 973 971 522 401.
Тем не менее, если мы ослабим ограничения, то появится возможность сгенерировать так называемые сумасбродные самовлюбленные числа. Они могут быть образованы с помощью собственных цифр любым возможным способом. Вот несколько примеров сумасбродных самовлюбленных чисел:
6859 = (6 + 8 + 5)<sup>√9</sup>
24739 = 2<sup>4 </sup>+ 7! + 3<sup>9</sup>
23328 = 2 × 3<sup>3! </sup>× 2 × 8
Итак, благодаря визиту Гринволд и Нестлера в эпизоде «Мардж и Гомер спасают чужой брак» появились простое число Мерсенна, совершенное число и самовлюбленное число. На протяжении многих лет мультсериал «Симпсоны» оказывал влияние на методику преподавания, теперь же ситуация изменилась на прямо противоположную: профессора оказали влияние на «Симпсонов».
Но почему авторы мультсериала выбрали именно эти числа для демонстрации на экране Jumbo-Vision? Ведь существуют сотни видов интересных чисел, и любые могли бы сыграть свою роль в эпизоде. Например, так называемые числа-вампиры, цифры которых можно разделить таким образом, чтобы образовались два новых числа (известных как «клыки»), произведение которых равно исходному числу. Например, 136 948 – это число-вампир, поскольку 136 948 = 146 × 938. Еще более интересный пример – число 16 758 243 290 880, потому что его клыки можно сформировать четырьмя разными способами:
1675824290880 = 1982736 × 8452080
1675824290880 = 2123856 × 7890480
1675824290880 = 2751840 × 6089832
1675824290880 = 2817360 × 5948208
Если бы сценаристы захотели использовать в высшей степени особенное число, они могли бы выбрать безукоризненное число. Таких чисел всего два, поскольку они должны удовлетворять двум строгим требованиям, имеющим отношение к совершенству. Во-первых, общее количество делителей этого числа должно быть совершенным числом; во-вторых, сумма этих делителей тоже должна быть совершенным числом. Первое безукоризненное число – 12, так как его делители – 1, 2, 3, 4, 6 и 12. Количество делителей равно 6, а их сумма – 28, причем 6 и 28 – совершенные числа. Второе безукоризненное число – 6 086 555 670 238 378 989 670 371 734 243 169 622 657 830 773 351 885 970 528 324 860 512 791 691 264. |