По словам сценаристов, они выбрали число Мерсенна, совершенное число и самовлюбленное число для эпизода «Мардж и Гомер спасают чужой брак» только потому, что все они примерно равны реальному количеству зрителей на бейсбольном стадионе. Кроме того, именно эти числа первыми пришли им в голову. Поправки в сценарий вносились в последнюю минуту, поэтому авторам некогда было долго думать над выбором чисел.
Но теперь, по прошествии времени, я готов поспорить, что сценаристы выбрали самые подходящие числа, поскольку они еще видны на экране в момент появления Табиты Викс, причем каждое из них как будто представляет собой ее точное описание. Будучи одним из наиболее эффектных персонажей «Симпсонов», Табита считает себя совершенной женщиной в расцвете лет, поэтому неудивительно, что она – самовлюбленный человек. В действительности в самом начале эпизода Табита, одетая в откровенное платье, вызывающе танцует перед восхищенными бейсбольными фанатами мужа, так что появление сумасбродного самовлюбленного числа на экране стадиона более чем уместно.
* * *
Хотя Гринволд и Нестлер могут показаться исключительными преподавателями, они не единственные, кто обсуждает «Симпсонов» на своих лекциях. Джоэл Сокол из Технологического института Джорджии в курсе лекций под названием «Принятие решений в противостоянии с соперником: практическое применение математической оптимизации» использует слайды с описанием игры «камень, ножницы, бумага», в которую играют герои «Симпсонов». Этот курс лекций посвящен теории игр – области математики, которая занимается моделированием поведения участников в конфликтных ситуациях и партнерских отношениях. Теория игр может помочь нам понять очень многое, от домино до военных действий, от животного альтруизма до переговоров профсоюзов. Точно так же Дирк Матри, экономист Университета штата Пенсильвания, активно интересующийся математикой, использует сцены из «Симпсонов» с игрой «камень, ножницы, бумага», когда рассказывает студентам о теории игр.
На первый взгляд кажется, что «камень, ножницы, бумага» (сокращенно КНБ) – достаточно простая игра, поэтому вас удивит тот факт, что она может представлять какой-либо интерес с точки зрения математики. Тем не менее в руках специалиста по теории игр КНБ становится сложной битвой между двумя соперниками, пытающимися перехитрить друг друга. На самом деле в КНБ много скрытых математических тонкостей.
Но прежде чем их раскрыть, позвольте кратко описать правила игры. В КНБ участвуют два игрока, которые играют по очень простым правилам. Сначала они вместе считают «Раз, два, три…» и на счете «три» показывают рукой один из трех знаков: камень (сжатый кулак), бумага (открытая, плоская ладонь) или ножницы (указательный и средний пальцы образуют букву V). Победитель определяется по принципу «круговой иерархии»: камень затупляет ножницы (побеждает камень); ножницы режут бумагу (побеждают ножницы); бумага заворачивает камень (побеждает бумага). Если оба игрока выбрали один и тот же знак, значит, в этом раунде будет ничья.
За многие столетия в разных культурах сформировались свои варианты этой игры, от индонезийского «слон, человек, уховертка» до «НЛО, микроб, корова», созданного любителями научной фантастики. В последней версии НЛО расчленяет корову, корова поедает микробы, а микробы заражают НЛО.
Хотя каждая культура имеет свои элементы игры, общие правила остаются неизменными. |