Изменить размер шрифта - +
Если вдуматься, легко понять почему: это двухмерные представления о том, на что похожи трехмерные конструкции. То есть такие чертежи для слепого бесполезны, только запутывают. Скажем, я чувствую трапецоид; что он означает — именно трапецоид или какой-то прямоугольник, не совпадающий с листом, на котором изображен?

Или общепринятое представление плоскости? Ответ содержится лишь в описании чертежа. Без описания я могу всего-то навсего предполагать, что такое одна или другая фигура. Куда проще с трехмерными моделями, которые можно и ощупать руками.

Но сейчас приходилось действовать по-иному. Я провел ладонями по запутанному узору линий, несколько раз прочертил его специальной ручкой, определил наличие двух треугольников, углы которых соединялись прямыми, и линий, что продолжали в одном направлении стороны фигур. После чего попытался установить, какая из набора трехмерных моделей подходит к чертежу. Попробуйте как-нибудь сами и наверняка поймете, сколь велико бывает порой умственное напряжение. Проективное воображение…

Ну и ну! Чертеж походил на весьма приблизительное геометрическое представление теоремы Дезарга.

С. Теорема Дезарга — одна из первых, выведенных непосредственно для проективной геометрии. Ее доказал в середине семнадцатого века Жерар Дезарг, отвлекшись на время от архитектуры, механики, музыки и многого другого. Она сравнительно проста, а применительно к трехмерной геометрии даже банальна. Суть теоремы показана на рисунке 1; если хотите, можете вернуться к нему. Она гласит, что при том положении, какое изображено на чертеже, точки Р, О и Е. лежат на одной прямой. Доказательство на деле весьма простое. По определению, течки Р, О и К находятся на той же плоскости m, что и треугольник АВС, и одновременно на плоскости m', как и треугольник А'В'С". Две плоскости могут пересекаться в одной-единственной линии, а поскольку Р, О и К находятся в обеих плоскостях, они должны лежать на этой линии пересечения. То есть на одной прямой, что и требовалось доказать.

Скажете, очевидно? Совершенно верно. Однако вас наверняка удивит, сколько в геометрии очевидных доказательств (если рассматривать те шаг за шагом и сводить к отдельным элементам). Когда язык настолько недвусмыслен, все становится ясно само собой. Вот если бы и сердца людей говорили на таком языке!

Кстати, верно еще и то, что теорема Дезарга обратима. Если принять, что даны два треугольника, продолжения сторон которых сходятся в трех коллинеарных точках, можно доказать, что прямые АА', ВВ', и СС' встречаются в одной точке. Как пишут в учебниках, оставляю доказательство этого в качестве домашнего задания читателям.

АС. Ну и что? Теорема прекрасна, в ней присутствуют чистота и изящество математики Ренессанса, но почему именно ее изобразила на своем чертеже узница Пентагона?

Я размышлял над этим по дороге в клуб здоровья под названием «Курорт Уоррена» — так сказать, попутно, в подсознании, ибо основное внимание сосредоточил на дороге. Вашингтонские улицы слегка смахивают на те запутанные чертежи, о которых я упоминал выше: широкие проспекты рассекают решетку улиц по диагонали, образуя множество перекрестков. По счастью, весь город знать не обязательно, однако заблудиться в нем проще простого. Поэтому я мысленно отсчитывал шаги, прислушивался к звукам, которые оставались приблизительно теми же самыми, принюхивался — запах грязи из парка на пересечении улицы М и Нью-Гемпширского шоссе, аромат горячих сосисок на углу Двадцать первой улицы, — познавал с помощью трости мир у себя под ногами, а очки с микролокатором свистом предупреждали о приближении или удалении человека либо предмета. Проделать путь из точки А в точку В и не потерять ориентировки довольно трудно — если, заплутал, приходится, скрежеща зубами, спрашивать дорогу, но все же можно; это задача или достижение — как когда, — которой слепому не избежать.

Быстрый переход